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Dankwoord

Het dankwoord. Ondertussen het stuk van mijn doctoraat dat ik het meeste
heb uitgesteld. Niet omdat ik geen mensen wil bedanken, maar omdat ik
dat goed en zeer oprecht wil doen.1 De voorbije zes jaar is er veel gebeurd.
Er zijn ups en downs geweest. Er zijn een hoop individuen die mij in die
zes jaar gesteund hebben wanneer het moeilijk ging, blij voor mij waren
wanneer het goed ging, en mij allemaal op hun manier geholpen hebben.
Die verdienen hier allemaal een bedanking.

De eerste bedanking gaat uit naar mijn promotoren. Peter, Bart en Bram,
bedankt voor jullie begeleiding de voorbije jaren. Het spreekt voor zich
dat mijn doctoraat er niet zou gekomen zijn zonder jullie.

Ook mijn jury wil ik graag bedanken. Hun kritische vragen en opmerkingen
hebben de finale tekst van mijn doctoraat zonder enige twijfel verbeterd.
Christophe, Wesley, Frank, Kim en Raija, bedankt! Verder zou ik graag
Dominique willen bedanken om de rol als voorzitter van mijn jury op te
nemen.

Een eerder atypische bedanking gaat uit naar alle artiesten waarvan ik
de muziek gebruikt heb om tijdens het schrijven van mijn doctoraat de
concentratie te behouden.2 Dit zijn Anohni, Boygenius3, Charlotte Cardin,
Eliza McLamb, Jan Swerts, Katy Kirby, Marika Hackman, Pinegrove,
SOPHIE, Spinvis en Tate McRae.

Veel van mijn tijd aan de UGent is naast onderzoek ook aan onderwijs
gespendeerd. Daarbij had ik veel contact met mijn mede-begeleiders. Merci
aan Adnan, Annick, Antoine, Dieter, Ellen, Felipe, Felix, Henri, Lotte,
Louise, Niko, Oliver, Silvija, Tibo, Toon en Yentl voor de fijne samenwer-
king.

1Het dankwoord is vaak ook het meest-gelezen deel van een doctoraat, wat het
uitstelgedrag alleen maar in de hand heeft gewerkt.

2Ik limiteer me tot de periode van het schrijven van mijn doctoraat, want als ik alles
had opgelijst dat die rol vervuld heeft in de voorbije zes jaar zou dit boek een stuk
dikker geworden zijn.

3En ook het solo-werk van Lucy Dacus, Phoebe Bridgers en Julien Baker.
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Er zijn ook nog veel andere collega’s die mijn tijd als doctoraatsstudent aan
de UGent opgefleurd hebben en waarvan ik blij ben dat ik velen als vrienden
mag benoemen. Ik heb genoten van de vele lunchpauzes, koffiepauzes,
spelletjesavonden, TWIkends, … Daarom ook bedankt aan Alexis, Asums,
Benjamin, Dieter, Felix, Heidi, Jonathan, Jorg, Louise, Mustapha, Nico,
Niels, Niko, Oliver, Pieter Goetschalckx, Pieter Verschaffelt, Rien, Robbert,
Roy, Simon, Steven, Tibo, Tom en Toon.

De voorbije vier jaar was ik ook lid van de faculteitsraad. Boris, Evert,
Francis, Jonathan, Jozefien, Lien, Pieter, Tom en Toon, mijn collega-AAP-
vertegenwoordigers, wil ik bedanken voor de samenwerking de voorbije
jaren.

Ook vanuit mijn leven buiten de UGent wil ik hier de kans nemen om een
hoop mensen te bedanken. Sowieso voltallig Zeus WPI, met eervolle vermel-
ding van Jasper. Met jullie over alles en niets discussiëren op Mattermost
was niet altijd bevorderlijk voor het schrijven van mijn doctoraat, maar ik
heb er mij toch mee geamuseerd. Tijdens de lockdown-periodes werden
mijn woensdagavonden ook vaak opgevrolijkt door Bart, Felix, Heidi, Rien,
Robbert, Steven en Toon.4 Het boulderen de voorbije maanden met Tom
“gewoon doorstappen”5 Naessens, Felix, Titouan, Deborah, Ruben, Arthur,
Nicky, Francis, Tom Lauwaerts, Jorg, Louise, Rien, Charlotte en Heidi was
een zeer goeie manier om mijn gedachten te verzetten na een dag schrijven,
en ik ben zeer blij in het boulderen een nieuwe hobby met veel leuke
mensen gevonden te hebben. Bij deze categorie horen ook nog de mensen
met wie ik D&D speel (of gespeeld heb). Ook bedankt dus aan Alexis,
Arne, Asmus, Bart, Felix, Heidi, Jorg, Kenneth, Lea, Louise, Maxiem en
Niko. Ten laatste, mijn mede-vrijwilligers bij het Rode Kruis: Henk, Jietse,
Jonas, Kristel, Luc, Nancy, Pascal, Philippe, Rien, Rikie, Sarah, Wim,
Wouter, …

Een naam waarvan ik niet wil dat die hierboven verloren gaat in de lange
lijsten aan namen en die ook een speciale bedanking verdient is die van
Dieter. Dieter, jij was degene die mij echt heeft doen thuisvoelen aan de
vakgroep. Ik heb je enorm gemist toen je je doctoraat afgewerkt had en
naar andere oorden vertrokken was, en ik ben heel blij dat we elkaar nog
steeds regelmatig zien.

De andere persoon die ik hier nog even apart wil bedanken is Toon. Toon
komt voor in ongeveer alle categorieën hierboven die niet met onderzoek

4Al ben ik 0 A.D. ondertussen wel volledig beu gespeeld, vrees ik.
5Een uitspraak die ik in mijn achterhoofd heb gehouden wanneer het schrijven van

mijn doctoraat wat trager ging.
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te maken hebben, maar eigenlijk verdient hij ook daarbij een bedanking.
Toon, je stond altijd klaar voor een babbel, over welk onderwerp dan
ook. In jouw dankwoord sprak je je verbazing uit dat we zo goed overeen
kunnen komen, ook al zijn we zeer verschillend. Ik kan dat gevoel alleen
maar beamen, maar ik denk dat een van de redenen dat we zo goed overeen
komen is dat we elkaar uitdagen, op vele vlakken. Doordat je tegenwoordig
in Berlijn zit zien we elkaar niet zo heel vaak meer, maar gelukkig horen
we elkaar nog ietwat regelmatig.

Ten laatste, de groep die het meest voor het uitstellen van dit dankwoord
te schrijven heeft gezorgd: mijn familie. Woorden kunnen niet uitdrukken
hoeveel steun ik gehad heb van mijn familie in de voorbije zes jaar. Ik vind
het dus ook moeilijk om uit te drukken hoe hard ik ze wil bedanken. Mama,
papa, Hannelore, Tomas, Seppe6, Robbe, Esther, Kero Kero7: bedankt,
bedankt, bedankt. Duizendmaal bedankt.

Charlotte Van Petegem

2024-06-19

6Het beste metekindje ter wereld.
7Ja, ook mijn kat verdient een bedanking.
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Summary in English

Ever since programming has been taught, its teachers have sought to auto-
mate and optimize their teaching. Due to the ever-increasing digitalization
of society, programming is also being taught to ever more and ever larger
groups, and these groups often include students for whom programming
is not necessarily their main subject. This has led to the development of
myriad automated assessment tools (Ala-Mutka, 2005; Douce et al., 2005;
Ihantola et al., 2010; Paiva, Leal, et al., 2022). One of those platforms is
Dodona8, which is the platform this dissertation is centred around.

Chapters 2, 3, and 4 focus on Dodona itself. In Chapter 2 we give an
overview of the user-facing features of Dodona, from user management to
how feedback is represented. Chapter 3 then focuses on how Dodona is
used in practice, by presenting some facts and figures of its use, students’
opinions of the platform, and an extensive case study on how Dodona’s
features are used to optimize teaching. This case study also provides insight
into the educational context for the research described in Chapters 5 and 6.
Chapter 4 focuses on the technical aspects of developing Dodona and
its related ecosystem of software tools. This includes a discussion of the
technical challenges related to developing a platform like Dodona, and how
the Dodona team adheres to modern standards of software development.

Chapters 5 and 6 are a bit different. These chapters each detail a learning
analytics/educational mining study we did, using the data that Dodona
collects about the learning process. Learning analytics and educational
data mining stand at the intersection of computer science, data analyt-
ics, and the social sciences, and focus on understanding and improving
learning. They are made possible by the increased availability of data
about students who are learning, due to the increasing move of education
to digital platforms (Romero et al., 2008). They can also serve different
actors in the educational landscape: they can help learners directly, help
teachers to evaluate their own teaching, allow developers of education
platforms to know what to focus on, allow educational institutions to

8https://dodona.be
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guide their decisions, and even allow governments to take on data-driven
policies (Ferguson, 2012).

Chapter 5 discusses a study where we tried to predict whether students
would pass or fail a course at the end of the semester based solely on
their submission history in Dodona. It also briefly details a study we
collaborated on with researchers from Jyväskylä University in Finland,
where we replicated our study in their educational context, with data from
their educational platform.

In Chapter 6, we first give an overview of how Dodona changed manual
assessment in our own educational context. We then finish the chapter
with some recent work on a machine learning method we developed to
predict what feedback teachers will give when manually assessing student
submissions.

Finally, Chapter 7 concludes the dissertation with some discussion on
Dodona’s opportunities and challenges for the future.

x



Nederlandstalige samenvatting

Al van bij de start van het programmeeronderwijs, proberen docenten
hun taken te automatiseren en optimaliseren. De digitalisering van de
samenleving gaat ook steeds verder, waardoor steeds meer en grotere
groepen studenten leren programmeren. Deze groepen bevatten ook vaker
studenten voor wie programmeren niet het hoofdonderwerp van hun studies
is. Dit heeft geleid tot de ontwikkeling van zeer veel platformen voor de
geautomatiseerde beoordeling van programmeeropdrachten (Ala-Mutka,
2005; Douce et al., 2005; Ihantola et al., 2010; Paiva, Leal, et al., 2022).
Eén van deze platformen is Dodona9, het platform waar dit proefschrift
over handelt.

Hoofdstukken 2, 3 en 4 focussen op Dodona zelf. In Hoofdstuk 2 geven
we een overzicht van de gebruikersgerichte features van Dodona, van
gebruikersbeheer tot hoe feedback getoond wordt. Hoofdstuk 3 focust
zich dan op hoe Dodona in de praktijk gebruikt wordt, door statistieken
over het gebruiken te presenteren, de meningen van studenten over het
platform te presenteren en met een uitgebreide case study waarin getoond
wordt hoe de verschillende features van Dodona kunnen bijdragen tot het
optimaliseren van onderwijs. Deze case study presenteert ook de context
waarin Hoofdstukken 5 en 6 zich situeren. Hoofdstuk 4 focust op het
technische aspect van het ontwikkelen van Dodona en het ecosysteem van
software gerelateerd aan Dodona. Dit bevat onder meer een bespreking
van de technische uitdagingen gerelateerd aan het ontwikkelen van een
platform zoals Dodona en hoe het Dodona-team zich aan de moderne
standaarden van softwareontwikkeling houdt.

Hoofdstukken 5 en 6 verschillen van de vorige hoofdstukken, in de zin dat
ze elk een learning analytics/educational data mining studie bespreken.
Deze studies werden uitgevoerd met de data die Dodona verzamelt over
het leerproces. Learning analytics en educational data mining bevinden
zich op het kruispunt tussen informatica, datawetenschap en de sociale
wetenschappen, en focussen zich op het begrijpen en verbeteren van leren.

9https://dodona.be
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Ze worden mogelijk gemaakt door de toegenomen beschikbaarheid van
data over lerende studenten, wat op zijn beurt komt door de toegenomen
beweging van onderwijs naar digitale platformen (Romero et al., 2008).
Ze kunnen ook dienen voor verschillende actoren in het onderwijsveld: ze
kunnen studenten direct helpen, docenten helpen om hun eigen onderwijs
te evalueren, ontwikkelaars van onderwijsplatformen laten weten waar
ze zich op moeten focussen, de beslissingen van onderwijsinstellingen
helpen gidsen, en zelfs overheden toelaten om op data gebaseerd beleid te
voeren (Ferguson, 2012).

Hoofdstuk 5 bespreekt een studie waarin we geprobeerd hebben te voorspel-
len of studenten al dan niet zouden slagen voor een vak op het einde van
het semester, enkel en alleen gebaseerd op hun indiengedrag op Dodona.
Daarnaast wordt er kort een samenwerking besproken met onderzoekers
van de universiteit van Jyväskylä in Finland, waar we onze studie herhaald
hebben in hun educationele context, gebruikmakend van data afkomstig
van hun platform.

In Hoofdstuk 6 geven we eerst een overzicht van hoe Dodona het manueel
verbeteren in onze eigen educationele context veranderd heeft. We sluiten
dan het hoofdstuk af met een recent door ons ontwikkelde machine-learning-
methode om te voorspellen welke feedback docenten zullen geven tijden
het manueel verbeteren van indieningen van studenten.

We sluiten af in Hoofdstuk 7 met een bespreking van de mogelijkheden en
uitdagingen waar Dodona in de toekomst voor staat.

xii
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List of Software Artefacts

Development of software was an important part of the work that went
into this PhD. Chapter 4 discusses (part of) the development of Dodona
and its ecosystem of software, but for convenience, all repositories that
I worked on as part of this PhD are listed below, together with a short
description. For brevity, only open-source repositories that are used in
production are listed.

Dodona

https://github.com/dodona-edu/dodona

This is the main Dodona repository. It contains all Dodona’s application
code, from frontend to backend, and the machinery required to run back-
ground jobs. Dodona is a Ruby-on-Rails web application. Lightweight
web components are used to add interactivity to the frontend.

Dodona documentation

https://github.com/dodona-edu/dodona-edu.github.io

Dodona is used by many people, and thus needs extensive documentation.
This repository contains all user-facing documentation, both for teachers
and students, and is accessible in a user-friendly format on https://docs.
dodona.be/. This includes guides on how to get started with Dodona,
how to add new exercises to Dodona, and much more.

TESTed

https://github.com/dodona-edu/universal-judge

TESTed is a universal judge, in that exercise authors only have to create
an exercise once to have it be available in all the programming languages
TESTed supports. Supported programming languages include Python,
JavaScript, Java, Kotlin, C#, C, Haskell, …
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R judge

https://github.com/dodona-edu/judge-r

Judge for the R programming language. This judge also has support for
showing generated figures in the feedback and can even do introspection
on GGPlot objects.

Papyros

https://github.com/dodona-edu/papyros

Web IDE that can execute Python code in the browser, using Pyodide to
do so. It also has a built-in debugger, based on the Python Tutor.

Docker images

https://github.com/dodona-edu/docker-images

This repository contains Dockerfiles corresponding to Dodona’s judges.
These Dockerfiles make sure every judge has all the libraries and binaries
required for the judge to function.
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1 Introduction

Ever since programming has been taught, its teachers have sought to auto-
mate and optimize their teaching. Due to the ever-increasing digitalization
of society, programming is also being taught to ever more and ever larger
groups, and these groups often include students for whom programming
is not necessarily their main subject. This has led to the development
of myriad automated assessment tools (Ala-Mutka, 2005; Douce et al.,
2005; Ihantola et al., 2010; Paiva, Leal, et al., 2022), of which we give a
historical overview in this introduction. We also discuss learning analytics
and educational data mining, and how these techniques can help us to cope
with the growing class sizes. We then give an overview of programming
education in Flanders, including recent societal changes around this topic.
Afterwards, we give a brief overview of the remaining chapters of this
dissertation. We then conclude the introduction with a brief section on
the ethics and research integrity of the work presented in this dissertation.

1.1 Automated assessment in programming
education

Increasing interactivity in learning has long been considered important,
and also something that can be achieved through the addition of (web-
based) IT components to a course (Van Petegem et al., 2004). This is
also the case when learning to program: learning how to solve problems
with computer programs requires practice, and programming assignments
are the main way in which such practice is generated (Gibbs & Simpson,
2005). Cheang et al. (2003) identified the labor-intensive nature of
assessing programming assignments as the main reason why students are
given only few assignments when in an ideal world they should be given
many more. Automated assessment allows students to receive immediate
and personalized feedback on each submitted solution without the need
for human intervention. Because of its potential to provide feedback
loops that are scalable and responsive enough for an active learning
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environment, automated source code assessment has become a driving
force in programming courses.

1.1.1 Humble beginnings
Automated assessment was introduced into programming education in
the late 1950s (Hollingsworth, 1960). In this first system, programs were
submitted in assembly on punch cards. For the reader who is not familiar
with punch cards, an example of one can be seen in Figure 1.1. The
assessment was then performed by combining the student’s punch cards
with the autograder’s punch cards. In the early days of computing, the
time of tutors was not the only valuable resource that needed to be shared
between students; the actual compute time was also a shared and limited
resource. Their system made more efficient use of both. Hollingsworth
(1960) already notes that the class sizes were a main motivator to introduce
their auto-grader. At the time of publication, they had tested about 3 000
student submissions which, given a grading run took about 30 to 60 seconds,
represents about a day and a half of computation time.

They also immediately identified some limitations, which are common
problems that modern assessment systems still need to consider. These
limitations include handling faults in the student code, making sure stu-
dents can not modify the grader, and having to define an interface through
which the student code is run.

Figure 1.1: Example of a punch card. Scan from the archive of Ludo Coppens,
provided by Bart Coppens in personal correspondence.

In the next ten years, significant advances were already made. Students
could submit code written in a text-based programming language instead

2



1.1 Automated assessment in programming education

of assembly, and the actual testing was done by running their code using
modified compilers and operating systems.

Naur (1964) was the first to explicitly note the difference between the
formal correctness, and the efficiency and completeness of the programs
being tested. The distinction between formal correctness and completeness
that he makes can be somewhat confusing from a modern standpoint:
we would only consider a program or algorithm formally correct if it is
complete (i.e. gives the correct response in all cases). In more modern
terminology, Naur’s “formally correct” would be called “free of syntax
errors”.

Forsythe & Wirth (1965) note another issue when using automatic graders:
students could use the feedback they get to hard-code the expected response
in their programs. This is also still an issue that modern assessment
systems (or the teachers creating exercises) need to consider. Forsythe &
Wirth solve this issue by randomizing the inputs to the student’s program.
While not explicitly explained by them, we can assume that to check the
correctness of a student’s answer, they calculate the expected answer in the
grader program as well. Note that in this system, they were still writing a
grading program for each individual exercise.

Hext & Winings (1969) introduce another innovation: their system could
be used for exercises in multiple different programming languages. They
are also the first to implement a history of student’s attempts in the
assessment tool itself, and mention explicitly that enough data should be
recorded in this history so that it can be used to calculate a mark for a
student.

Other grader programs were in use at the time, but these did not necessarily
bring any new innovations or ideas to the table (Berry, 1966; Braden &
Perlis, 1965; Temperly & Smith, 1968).

The systems described above share an important limitation, which is
inherent to the time at which they were built. Computers were big and
heavy, and had operators who did not necessarily know whose program
they were running or what those programs were. The Mother of All Demos
by Engelbart & English (1968), widely considered the birth of the idea of
the personal computer, only happened after these systems were already
running. So, it should not come as a surprise that the feedback these
systems gave was slow to return to the students.
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1.1.2 Tool- and script-based assessment
We now take a leap forward in time to the late 1970s. The way people use
computers has changed significantly, and the way assessment systems are
implemented changed accordingly. Note that while the previous section
was complete (as far as we could find in published literature), this section
is decidedly not so. At this point, the explosion of automated assess-
ment systems/automated grading systems for programming education had
already set in. To describe all platforms would take a full dissertation
in and of itself. So from now on, we will pick and choose systems that
brought new and interesting ideas that stood the test of time.10

ACSES, by Nievergelt (1976), was envisioned as a full course for learning
computer programming. They even designed it as a full replacement for
a course: it was the first system that integrated both instructional texts
and exercises. Students following this course would not need personal
instruction. In the modern day, this would probably be considered a
massive open online course (MOOC).11

Another good example of this generation of grading systems is the system
by Isaacson & Scott (1989). They describe the functioning of a UNIX shell
script that automatically e-mails students if their code did not compile, or
if they had incorrect outputs. It also had a configurable output file size
limit and time limit. Student programs would be stopped if they exceeded
these limits. Like all assessment systems up to this point, they only focus
on whether the output of the student’s program is correct, and not on the
code style.

Reek (1989) takes a different approach. He identifies several issues with
gathering students’ source files, and then compiling and executing them
in the teacher’s environment. Students could write destructive code that
destroys the teacher’s files, or even write a clever program that alters their
grades (and covers its tracks while doing so). Note that this is not a new
issue: as we discussed before, this was already mentioned as a possibility
by Hollingsworth (1960). This was, however, the first system that tried
to solve this problem. Avoiding that teachers need to run their students’
programs was therefore an explicit goal of his TRY system. Another goal
was avoiding giving the inputs that the program was tested on to students.
These goals were mostly achieved using the UNIX setuid mechanism.
10The ideas, not the platforms. As far as we know none of the platforms described in

this section are still in use.
11Except that it obviously was not an online course; TCP/IP would not be standardized

until 1982.
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Note that students were using a true multi-user system, as in common use
at the time. Every attempt was also recorded in a log file in the teacher’s
personal directory. Generality of programming language was achieved
through intermediate build and test scripts that had to be provided by
the teacher.

This is also the first study we could find that pays explicit attention
to how expected and generated output is compared. In addition to the
basic character-by-character comparison, it is also supported to define the
interface for a function that students have to call with their outputs. The
instructor can then link an implementation of this function in the build
script.

Even later, automated assessment systems were built with graphical user
interfaces. A good example of this is ASSYST (Jackson & Usher, 1997).
ASSYST also added evaluation on other metrics, such as runtime or
cyclomatic complexity as suggested by Hung et al. (1993).

1.1.3 Moving to the web
After Tim Berners-Lee invented the web in 1989 (Berners-Lee et al., 1992),
automated assessment systems also started moving to the web. Especially
with the rise of Web 2.0 (O’Reilly, 2007) and its increased interactivity,
this became more and more common. Systems like the one by Reek (1989)
also became impossible to use because of the rise of the personal computer.
Mainly because the typical multi-user system was used less and less, but
also because the primary way people interacted with a computer was no
longer through the command line, but through graphical user interfaces.

Higgins et al. (2003) developed CourseMarker, which is a more general
assessment system (not exclusively developed for programming assessment).
This was initially not yet a web-based platform, but it did communicate
over the network using Java’s Remote Method Invocation mechanism. The
system it was designed to replace, Ceilidh, did have a basic web submission
interface (Hughes et al., 1998). Designing a web client was also mentioned
as future work in the paper announcing CourseMarker.

Perhaps the most famous example of the first web-based platforms is
Web-CAT (Shah, 2003). In addition to being one of the first web-based
automated assessment platforms, it also asked the students to write their
own tests. The coverage that these tests achieved was part of the testing
done by the platform. Tests are written using standard unit testing
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frameworks (Edwards & Pérez-Quiñones, 2007). An example of Web-
CAT’s submission screen can be seen in Figure 1.2.

Figure 1.2: Web-CAT’s submission screen for students. Image taken from Ed-
wards (2006).

This is also the time when we first start to see mentions of plagiarism and
plagiarism detection in the context of automated assessment, presumably
because the internet made plagiarizing a lot easier. In one case at MIT
over 30% of students were found to be plagiarizing (Wagner, 2000). Daly
& Horgan (2005) analysed plagiarizing behaviour by watermarking student
submissions, where the watermark consisted of added whitespace at the
end of lines. If students carelessly copied another student’s submission,
they would also copy the whitespace. Around this time, Schleimer et al.
(2003) also published MOSS (Measure of Software Similarity), a popular
tool for checking code similarity.

Another important platform is the Sphere Online Judge (SPOJ) (Kosowski
et al., 2008). SPOJ is especially important in the context of this disserta-
tion, since it was the platform we used before Dodona. SPOJ specifically
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notes the influence of online contest platforms (and in fact, is a platform
that can be used to organize contests). Online contest platforms usually
differ from the automated assessment platforms for education in the way
they handle feedback. For online contests, the amount of feedback given
to participants is often far less than the feedback given in education to
students. Although, depending on the educational vision of the teacher,
this happens in education as well.

The SPOJ paper also details the security measures they took when ex-
ecuting untrusted code. They use a patched Linux kernel’s rlimits, the
chroot mechanism, and traditional user isolation to prevent student code
from malicious action.

Another interesting idea was contributed by Brusilovsky & Sosnovsky
(2005) in QuizPACK. They combined the idea of parametric exercises
with automated assessment by executing source code. In QuizPACK,
teachers provide a parameterized piece of code, where the value of a
specific variable is the answer that a student needs to give. The piece
of code is then evaluated, and the result is compared to the student’s
answer. Note that in this platform, it is not the students themselves who
are writing code.

1.1.4 Adding features

At this point in history, the idea of a web-based automated assessment
system for programming education is no longer new. But still, more and
more new platforms are being written. For a possible explanation, see
Figure 1.3.

All of these platforms support automated assessment of code submitted
by students, but try to differentiate themselves through the features
they offer. The FPGE platform by Paiva, Queirós, et al. (2022) offers
gamification, iWeb-TD (Fonseca et al., 2023) integrates a full-fledged
editor, PLearn (Vasyliuk & Lytvyn, 2023) recommends extra exercises to
its users, JavAssess (Insa & Silva, 2018) tries to automate grading, and
GradeIT (Parihar et al., 2017) features automatic hint generation.
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Figure 1.3: Comic on the proliferation of standards, which is also applicable
to the proliferation of automated assessment platforms. Created
by Randall Munroe, released under the CC BY-NC 2.5 licence via
https://xkcd.com/927/.

1.2 Learning analytics and educational data
mining

Learning analytics and educational data mining stand at the intersection
of computer science, data analytics, and the social sciences, and focus on
understanding and improving learning. They are made possible by the
increased availability of data about students who are learning, due to the
increasing move of education to digital platforms (Romero et al., 2008).
They can also serve different actors in the educational landscape: they can
help learners directly, help teachers to evaluate their own teaching, allow
developers of educational platforms to know what to focus on, allow edu-
cational institutions to guide their decisions, and even allow governments
to take on data-driven policies (Ferguson, 2012). Learning analytics and
educational data mining are overlapping fields, but in general, learning
analytics is seen as focusing on the educational challenge, while educational
data mining is more focused on the technical challenge (Ferguson, 2012).
The analytics focusing on governments or educational institutions is called
academic analytics.

In this dissertation, we will use the definitions of educational data mining
and learning analytics from Romero & Ventura (2020). They define educa-
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1.2 Learning analytics and educational data mining

tional data mining to be “concerned with developing methods for exploring
the unique types of data that come from educational environments” and
learning analytics as “the measurement, collection, analysis, and reporting
of data about learners and their contexts, for purposes of understanding
and optimizing learning and the environments in which it occurs”. In short,
educational data mining is concerned with developing methods and tools
to use educational data, while learning analytics is used to gather and
present insights into learning.

Chatti et al. (2012) defined a reference model for learning analytics
and educational data mining based on four dimensions: i) What data
is gathered and used? ii) Who is targeted by the analysis? iii) Why is
the data analysed? iv) How is the data analysed? This gives an idea
to researchers what to focus on when conceptualizing, executing, and
publishing their research.

An example of educational data mining research is Daud et al. (2017),
where the students’ background (including family income, family expendit-
ures, gender, martial status, …) is used to predict the student’s learning
outcome at the end of the semester. Evaluating this study using the
reference model by Chatti et al. (2012), we can see that the data used is
very personal and hard to collect. As mentioned in the study, the primary
target audience of the study are policymakers. The data is analysed to
evaluate the influence of a student’s background on their performance, and
this is done by using a number of machine learning techniques (which are
compared to one another).

Another example of the research in this field is a study by Akçapınar et
al. (2019). They focus on the concept of an early warning system, where
student performance can be predicted early and appropriate action could
be undertaken. Their study uses data from a blended learning environment,
where students can see the lesson’s resources, participate in discussions,
and write down their own thoughts about the lessons. Here, the primary
target audience is the student. Although the related actions are not yet in
scope of the study, the primary goal is to develop such an early warning
system. Again, a number of machine learning techniques are compared, to
determine which one gives the best results.
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1.3 Programming education in Flanders
In Flanders (Belgium), programming is taught in lots of ways, and at
many levels. This includes secondary and higher education, but it is also
something children can do in their free time, as a hobby. There are also
trainings for the workforce, but these are not the focus of this dissertation.

Programming education as a hobby for children is provided by organiza-
tions such as CoderDojo12 and CodeFever13. CoderDojo is a non-profit
organization that relies on volunteers to organize free sessions for children
from 7 up to 18 years old. They use tools like Scratch (Maloney et al.,
2010), AppInventor (Patton et al., 2019), and Code.org14 to teach children
the basics of programming in a fun, gamified way. CodeFever is also a
non-profit organization, but does ask for registration fees for enrolling in
one of their courses. They focus on children aged 8 to 15, and primarily
use Scratch and JavaScript to teach programming concepts.

In secondary education, things recently changed. Before 2021, education
related to computing was very much up to the individual school and
teacher. While there were some schools where programming was taught,
this was mostly a rare occurrence except for a few specific IT-oriented
programmes. In 2021, however, the Flemish parliament approved a new
set of educational goals. In these educational goals, there was an explicit
focus on digital competence, where for a lot of educational programmes,
this explicitly included programming. Not much later though, one of
the umbrella organizations for schools challenged the new educational
goals in Belgium’s constitutional court. They felt that the government was
overreaching in the specificity of the educational goals.15 The constitutional
court agreed, after which the government went back to the drawing board,
and made a lot of the goals less detailed. Digital competence is still a
part of the new educational goals, but programming is no longer explicitly
listed. However, for some programmes there are specific educational goals
that list competences related to computer science that students should
have when finishing secondary education. These programmes are mostly
focused on the sciences or have more mathematics. The listed competences
include programming, algorithms, data structures, numerical methods,
etc. For programmes focused on IT, there is an even bigger list of related

12https://coderdojobelgium.be/nl (in Dutch)
13https://www.codefever.be/nl (in Dutch)
14https://code.org/
15Traditionally, the educational goals were quite loose, allowing the umbrella organiza-

tions to add their own accents to the subjects being taught.
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1.4 Structure of this dissertation

competences that the students should have. Python is the most common
programming language used at this level, but other programming languages
like Java and C# are also used.

In higher education, programming has made its way into a lot of pro-
grammes. Almost all students studying exact sciences or engineering have
at least one programming course, but programming is also taught outside
these domains (e.g. as part of a statistics course). Here we see the greatest
diversity in the programming languages that are taught. Python, Java,
and R are the most common languages for students for whom computer
science is not the main subject. Computer science students are taught
a plethora of languages, from Python and Java to Prolog, Haskell and
Scheme.

1.4 Structure of this dissertation
This dissertation tries to answer the following central research question:
How can we use data from an automated assessment platform to improve
learning and teaching in programming education? An important prerequis-
ite for answering this question is the existence of an automated assessment
platform. For this dissertation we use Dodona16 as that automated assess-
ment platform. Dodona is an online learning environment that recognizes
the importance of active learning and just-in-time feedback in courses
involving programming assignments. We started Dodona because our own
educational needs outgrew SPOJ (Kosowski et al., 2008), the platform
we were using before. SPOJ was chosen because it was one of the rare
platforms that allowed the addition of courses, exercises (and even judges)
by teachers. This also influenced the development of Dodona. Every year
since its inception in 2016, more and more teachers have started using
Dodona. It is now used in most higher education institutions in Flanders,
and many secondary education institutions as well.

The development and use of Dodona is an important part of the work that
went into this dissertation, and therefore constitutes the first part of this
dissertation. Chapter 2 answers the following question: What features
does a platform like Dodona need? We therefore give an overview of the
user-facing features of Dodona, from user management to how feedback
is represented. Chapter 3 answers the question: How is Dodona used
in practice? We do this by presenting some facts and figures of its use,
16https://dodona.be/
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1 Introduction

students’ opinions of the platform, and an extensive case study on how
Dodona’s features are used to optimize teaching. This case study also
provides insight into the educational context for the research described
in Chapters 5 and 6. Chapter 4 answers the question: What goes into
building a platform like Dodona? We therefore focus on the technical
aspect of developing Dodona and its related ecosystem of software. This
includes a discussion of the technical challenges related to developing
a platform like Dodona, and how the Dodona team adheres to modern
standards of software development.

In the second part of this dissertation, we focus on the educational data
mining studies we performed to improve learning and teaching. Chapter 5
asks whether we can predict student performance and whether we can
do so in a way that makes it clear which factors influence this prediction.
The chapter discusses an educational data mining study where we tried to
predict whether students would pass or fail a programming course at the
end of the semester based solely on their submission history in Dodona.
It also briefly details a study we collaborated on with researchers from
Jyväskylä University in Finland, where we replicated our study in their
own educational context, with data from their own educational platform.

Chapter 6 then looks at the teacher’s side of our central question and
answers the question on how we can optimize the process of giving manual
feedback. We first give an overview of how Dodona changed manual
assessment in our own educational context and then finish the chapter
with some recent work on a machine learning method we developed to
predict what feedback teachers will give when manually assessing student
submissions.

Finally, Chapter 7 concludes the dissertation with some discussion on
Dodona’s opportunities and challenges for the future.

1.5 On ethics and research integrity
Ethics and integrity have been very important during the development
of Dodona. Early in its development, we met with the Data Protection
Officer of Ghent University to create a privacy policy. We also only keep
the data required for running the platform. This results in very little
personal information being stored; only the users’ names, usernames, and
email addresses are stored in their profile. The only other data stored
is data generated in the platform: submissions, evaluations, questions,
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answers, etc. In this case too, we only keep the information required for
the correct functioning of these features. The development of Dodona is
also done in the open: the platform has been open-source since August
2019.

The same philosophy has been extended to our research. All data used in
Chapter 5 was pseudonymized before the analysis was started and no data
was collected specifically to enable this research. Conversely, the research
was restricted to data that was already collected by Dodona for its regular
operations. The data used in the study was also not published. This is of
course not conducive to the verifiability of the research, which is why we
were very happy to see that our method could be reproduced in another
context. The research presented in Chapter 6 also doesn’t rely on any
personal information: only the IDs and locations of the saved feedback
items were used, in addition to the relevant code. Here also, the underlying
data was not published, to avoid any inadvertent personal information
present in the code being published.
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2 A closer look at Dodona

In this chapter, we will give an overview of Dodona’s most important
features. This chapter answers the question what features a platform like
Dodona needs. The most important feature is automated assessment, but
as we show in this chapter, a lot more features than that are needed.

This chapter is partially based on Van Petegem, C., Maertens, R.,
Strijbol, N., Van Renterghem, J., Van der Jeugt, F., De Wever, B., Daw-
yndt, P., Mesuere, B., 2023. Dodona: Learn to code with a virtual
co-teacher that supports active learning. SoftwareX 24, 101578. The work
described in this chapter was performed by the whole Dodona team. It is
difficult to pinpoint who did what. The code and its history can be looked
at17, but it will never give a full view of the true collaborative effort of
Dodona.

2.1 User management
Establishing the identity of its users is very important for an educa-
tional platform. For this reason, instead of providing its own authen-
tication and authorization, Dodona delegates authentication to external
identity providers (e.g. educational and research institutions) through
SAML (Farrell et al., 2002), OAuth (Hardt, 2012; Leiba, 2012) and
OpenID Connect (Sakimura et al., 2014). The configured OAuth providers
are Microsoft, Google, and Smartschool. This support for decentral-
ized authentication allows users to benefit from single sign-on when
using their institutional account across multiple platforms and teachers to
trust their students’ identities when taking high-stakes tests and exams in
Dodona.

Dodona automatically creates user accounts upon successful authentication
and uses the association with external identity providers to assign an
institution to users. These institutions can have multiple sign-in methods.
17https://github.com/dodona-edu/dodona/commits/main/
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If a user uses more than one of those methods, these logins are linked to the
same user. Institutions within Dodona can be used by teachers to establish
filters about who is allowed to register for their courses, establishing an
extra level of trust that their students have correctly signed in. Institutions
are also categorized internally in secundary education, higher education,
and other (e.g. the Flemish government).

By default, newly created users are assigned a student role. Teachers and
instructors who wish to create content (courses, learning activities and
judges), must first request teacher rights using a streamlined form18. The
sign in page can be seen in Figure 2.1. After logging in, a user sees an
overview of the courses they are registered with.

Figure 2.1: Sign in page showing the different options for users to sign in.

2.2 Course management
In Dodona, a course is where teachers and instructors effectively manage
a learning environment by instructing, monitoring and evaluating their
students and interacting with them, either individually or as a group. A
Dodona user who created a course becomes its first administrator and
can promote other registered users as course administrators. In what
follows, we will also use the generic term teacher as a synonym for course

18https://dodona.be/rights_requests/new/
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administrators if this Dodona-specific interpretation is clear from the
context, but keep in mind that courses may have multiple administrators.

The course itself is laid out as a learning path that consists of course
units called series, each containing a sequence of learning activities (Fig-
ure 2.2). Among the learning activities we differentiate between reading
activities that can be marked as read and programming assignments
with support for automated assessment of submitted solutions. Learning
paths are composed as a recommended sequence of learning activities to
build knowledge and skills progressively, allowing students to monitor their
own progress at any point in time. Courses can either be created from
scratch or from copying an existing course and making additions, deletions
and rearrangements to its learning path.

Students can self-register to courses in order to avoid unnecessary user
management. A course can either be announced in the public overview of
Dodona for everyone to see, or be limited in visibility to students from a
certain educational institution. Alternatively, students can be invited to a
hidden course by sharing a secret link. Independent of course visibility,
registration for a course can either be open to everyone, restricted to users
from the institution the course is associated with, or new registrations can
be disabled altogether. Registrations are either approved automatically or
require explicit approval by a teacher. Registered users can be tagged with
one or more labels to create subgroups that may play a role in learning
analytics and reporting.

Students and teachers more or less see the same course page, except for
some management features and learning analytics that are reserved for
teachers. Teachers can make content in the learning path temporarily
inaccessible and/or invisible to students. Content is typically made inac-
cessible when it is still in preparation or if it will be used for evaluating
students during a specific period. A token link can be used to grant access
to invisible content, e.g. when taking a test or exam from a subgroup of
students.

Students can only mark reading activities as read once, but there is no
restriction on the number of solutions they can submit for programming
assignments. Submitted solutions are automatically assessed and students
receive immediate feedback as soon as the assessment has completed,
usually within a few seconds. Dodona stores all submissions, along with
submission metadata and generated feedback, such that the submission
and feedback history can be reclaimed at all times. On top of automated
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Figure 2.2: Main course page (administrator view) showing some series with
deadlines, reading activities and programming assignments in its
learning path. At any point in time, students can see their own
progress through the learning path of the course. Teachers have some
additional icons in the navigation bar (top) that lead to an overview
of all students and their progress, an overview of all submissions
for programming assignments, general learning analytics about the
course, course management and a dashboard with questions from
students in various stages from being answered (Figure 2.9). The
red dot on the latter icon notifies that some student questions are
still pending.
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assessment, student submissions may be further assessed and graded
manually by a teacher (see Chapter 6).

Series can have a deadline. Passed deadlines do not prevent students
from marking reading activities or submitting solutions for programming
assignments in their series. However, learning analytics, reports and
exports usually only take into account submissions before the deadline.
Because of the importance of deadlines and to avoid discussions with
students about missed deadlines, deadlines are not only announced on the
course page. The student’s home page highlights upcoming deadlines for
individual courses and across all courses. While working on a programming
assignment, students will also see a clear warning starting from ten minutes
before a deadline. Courses also provide an iCalendar link (Stenerson &
Dawson, 1998) that students can use to publish course deadlines in their
personal calendar application.

Because Dodona logs all student submissions and their metadata, including
feedback and grades from automated and manual assessment, we use that
data to integrate reports and learning analytics in the course page (Fer-
guson, 2012). This includes heatmaps (Figure 2.3) and punch cards
(Figure 2.4) of user activity, graphs showing class progress (Figure 2.5),
and so on.

Figure 2.3: Heatmap showing on which days in the semester students are more
active or less active.

Figure 2.4: Punchcard showing when during the week students are working on
their exercises.
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Figure 2.5: Graph showing the percentage of students that correctly solved the
exercises in a certain series over time.

We also provide export wizards that enable the extraction of raw and
aggregated data in CSV format for downstream processing and educational
data mining (Baker & Yacef, 2009; Romero & Ventura, 2010). This allows
teachers to better understand student behaviour, progress and knowledge,
and might give deeper insight into the underlying factors that contribute
to student actions (Ihantola et al., 2010). Understanding, knowledge
and insights that can be used to make informed decisions about courses
and their pedagogy, increase student engagement, and identify at-risk
students (see Chapter 5).

2.3 Exercises
There are two types of assignments in Dodona: reading activities and pro-
gramming exercises. While reading activities only consist of descriptions,
programming exercises need an additional assessment configuration
that sets a programming language and a judge (for more information
on judges, see Section 2.4). This configuration is used to perform the
automated assessment. The configuration may also set a Docker image,
a time limit, a memory limit and grant Internet access to the container
that is instantiated from the image, but these settings have proper de-
fault values. The configuration might also provide additional assessment
resources: files made accessible to the judge during assessment. The
specification of how these resources must be structured and how they are
used during assessment is completely up to the judge developers. Finally,
the configuration might also contain boilerplate code: a skeleton stu-
dents can use to start the implementation that is provided in the code

20



2.4 Judges

editor along with the description. Directories that contain a learning
activity also have their own internal directory structure that includes a
description in HTML or Markdown. Descriptions may reference data
files and multimedia content included in the repository, and such content
can be shared across all learning activities in the repository. Embedded
images are automatically encapsulated in a responsive lightbox to improve
readability. Mathematical formulas in descriptions are supported through
MathJax (Cervone, 2012).

Where automatic assessment and feedback generation is outsourced to the
judge linked to an assignment, Dodona itself takes up the responsibility
for rendering the feedback. This frees judge developers from putting
effort in feedback rendering and gives a coherent look-and-feel even for
students that solve programming assignments assessed by different judges.
Because the way feedback is presented is very important (Mani et al.,
2014), we took great care in designing how feedback is displayed to make
its interpretation as easy as possible (Figure 2.6). Differences between
generated and expected output are automatically highlighted for each failed
test (Myers, 1986), and users can swap between displaying the output lines
side-by-side or interleaved to make differences more comparable. We even
provide specific support for highlighting differences between tabular data
such as CSV files, database tables and data frames. Users have the option
to dynamically hide contexts whose test cases all succeeded, allowing them
to immediately pinpoint reported mistakes in feedback that contains lots
of succeeded test cases. To ease debugging the source code of submissions
for Python assignments, the Python Tutor (Guo, 2013) can be launched
directly from any context with a combination of the submitted source code
and the test code from the context. Students typically report this as one
of the most useful features of Dodona.

2.4 Judges
The range of approaches, techniques and tools for software testing that
may underpin assessing the quality of software under test is incredibly
diverse. Static testing directly analyses the syntax, structure and data flow
of source code, whereas dynamic testing involves running the code with
a given set of test cases (Graham et al., 2021; Oberkampf & Roy, 2010).
Black-box testing uses test cases that examine functionality exposed to
end-users without looking at the actual source code, whereas white-box
testing hooks test cases onto the internal structure of the code to test
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Figure 2.6: Dodona rendering of feedback generated for a submission of the
Python programming assignment “Curling”. The feedback is split
across three tabs: isinside, isvalid and score. 48 tests under the
score tab failed as can be seen from the badge in the tab header.
The “Code” tab displays the source code of the submission with
annotations added during automatic and/or manual assessment (Fig-
ure 2.11). The differences between the generated and expected return
values were automatically highlighted and the judge used HTML
snippets to add a graphical representation (SVG) of the problem for
the failed test cases. In addition to highlighting differences between
the generated and expected return values of the first (failed) test
case, the judge also added a text snippet that points the user to a
type error.
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specific paths within a single unit, between units during integration, or
between subsystems (Nidhra & Dondeti, 2012). So, broadly speaking,
there are three levels of white-box testing: unit testing, integration testing
and system testing (Dooley, 2011; Wiegers, 1996). Source code submitted
by students can therefore be verified and validated against a multitude
of criteria: functional completeness and correctness, architectural design,
usability, performance and scalability in terms of speed, concurrency and
memory footprint, security, readability (programming style), maintain-
ability (test quality) and reliability (Staubitz et al., 2015). This is also
reflected by the fact that a diverse range of metrics for measuring software
quality have come forward, such as cohesion/coupling (Stevens et al., 1999;
Yourdon & Constantine, 1979), cyclomatic complexity (McCabe, 1976) or
test coverage (Miller & Maloney, 1963).

To cope with such a diversity in software testing alternatives, Dodona
is centred around a generic infrastructure for programming assign-
ments that support automated assessment. Assessment of a student
submission for an assignment comprises three loosely coupled compon-
ents: containers, judges and assignment-specific assessment configurations.
Judges have a default Docker image that is used if the configuration of a
programming assignment does not specify one explicitly. Dodona builds
the available images from Dockerfiles specified in a separate git reposit-
ory. More information on this underlying mechanism can be found in
Chapter 4. An overview of the existing judges and the corresponding
number of exercises and submissions in Dodona can be found in Table 2.1.

2.5 Repositories
Where courses are created and managed in Dodona itself, other content
is managed in external git repositories (Figure 2.7). In this distributed
content management model, a repository either contains a single judge or
a collection of learning activities. Setting up a webhook for the repository
guarantees that any changes pushed to its default branch are automatically
and immediately synchronized with Dodona. This even works without
the need to make repositories public, as they may contain information
that should not be disclosed such as programming assignments that are
under construction, contain model solutions, or will be used during tests or
exams. Instead, a Dodona service account must be granted push and
pull access to the repository. Some settings of a learning activity can be
modified through the web interface of Dodona, but any changes are always
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Judge # exercises # submissions
Bash 289 675 902
C 77 31 822
C# 256 44 294
Compilers 3 38
HTML 187 24 947
Haskell 76 76 556
Java 8 93 90 084
Java 21 450 730 383
JavaScript 36 68
Markdown 14 354
Prolog 54 37 609
Python 8 481 13 798 051
R 1 293 958 069
SQL 298 114 725
Scheme 277 125 138
TESTed 1 139 333 507
Turtle 17 446

Table 2.1: Overview of the judges in Dodona, together with the corresponding
number of exercises and submissions in Dodona. The data was
gathered in March 2024. The TESTed judge is a special case in that
it supports multiple programming languages. More information on it
can be found in Section 4.4. The number of exercises and submissions
for the JavaScript judge is undercounted: most of its exercises were
converted to TESTed exercises, which also moved the submissions to
those exercises to TESTed.
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pushed back to the repository in which the learning activity is configured
so that it always remains the master copy.

Figure 2.7: Distributed content management model that allows to seamlessly
integrate custom learning activities (reading activities and program-
ming assignments with support for automated assessment) and judges
(frameworks for automated assessment) into Dodona. Content creat-
ors manage their content in external git repositories, keep ownership
over their content, control who can co-create, and set up webhooks to
automatically synchronize any changes with the content as published
on Dodona.

Due to the distributed nature of content management, creators also keep
ownership over their content and control who may co-create. After all,
access to a repository is completely independent of access to its learning
activities that are published in Dodona. The latter is part of the con-
figuration of learning activities, with the option to either share learning
activities so that all teachers can include them in their courses or to restrict
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inclusion of learning activities to courses that are explicitly granted access.
Dodona automatically stores metadata about all learning activities such
as content type, natural language, programming language and repository
to increase their findability in our large collection. Learning activities may
also be tagged with additional labels as part of their configuration. Any
repository containing learning activities must have a predefined directory
structure19.

2.6 Internationalization and localization
Internationalization (i18n) is a shared responsibility between Dodona,
learning activities and judges. All boilerplate text in the user interface that
comes from Dodona itself is supported in English and Dutch, and users can
select their preferred language. Content creators can specify descriptions
of learning activities in both languages, and Dodona will render a learning
activity in the user’s preferred language if available. When users submit
solutions for a programming assignment, their preferred language is passed
as submission metadata to the judge. It’s then up to the judge to take
this information into account while generating feedback.

Dodona always displays localized deadlines based on a time zone setting
in the user profile, and users are warned when the current time zone
detected by their browser differs from the one in their profile.

2.7 Questions, answers and code reviews
A downside of using discussion forums in programming courses is that
students can ask questions about programming assignments that are either
disconnected from their current implementation or contain code snippets
that may give away (part of) the solution to other students (Nandi et al.,
2012). Dodona therefore allows students to address teachers with questions
they directly attach to their submitted source code. We support both
general questions and questions linked to specific lines of their submission
(Figure 2.8). Questions are written in Markdown (e.g. to include markup,
tables, syntax highlighted code snippets or multimedia), with support for
MathJax (e.g. to include mathematical formulas).

19https://docs.dodona.be/en/references/exercise-directory-structure/
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Figure 2.8: A student (Matilda) previously asked a question that has already
been answered by her teacher (Miss Honey). Based on this response,
the student is now asking a follow-up question that can be formatted
using Markdown.

Teachers are notified whenever there are pending questions (Figure 2.2).
They can process these questions from a dedicated dashboard with live
updates (Figure 2.9). The dashboard immediately guides them from an
incoming question to the location in the source code of the submission it
relates to, where they can answer the question similar to how students ask
questions. To avoid questions being inadvertently handled simultaneously
by multiple teachers, they have a three-state lifecycle: pending, in progress
and answered. In addition to teachers changing question states while
answering them, students can also mark their own questions as being
answered. The latter might reflect the rubber duck debugging (Hunt, 1999)
effect that is triggered when students are forced to explain a problem to
someone else while asking questions in Dodona. Teachers can (temporarily)
disable the option for students to ask questions in a course, e.g. when a
course is over or during hands-on sessions or exams when students are
expected to ask questions face-to-face rather than online.

Manual source code annotations from students (questions) and teachers
(answers) are rendered in the same way as source code annotations resulting
from automated assessment. They are mixed in the source code displayed
in the “Code” tab, showing their complementary nature. It is not required
that students take the initiative for the conversation. Teachers can also
start adding source code annotations while reviewing a submission. Such
code reviews will be used as a building block for manual assessment.
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Figure 2.9: Live updated dashboard showing all incoming questions in a course
while asking questions is enabled. Questions are grouped into three
categories: unanswered, in progress and answered.

2.8 Manual assessment
Teachers can create an evaluation for a series to manually assess stu-
dent submissions for its programming assignments after a specific period,
typically following the deadline of some homework, an intermediate test
or a final exam. An example of an evaluation overview can be seen on
Figure 2.10. The evaluation embodies all programming assignments in the
series and a group of students that submitted solutions for these assign-
ments. Because a student may have submitted multiple solutions for the
same assignment, the last submission before a given deadline is automatic-
ally selected for each student and each assignment in the evaluation. This
automatic selection can be manually overruled afterwards. The evaluation
deadline defaults to the deadline set for the associated series, if any, but
an alternative deadline can be selected as well.

Evaluations support two-way navigation through all selected submis-
sions: per assignment and per student. For evaluations with multiple
assignments, it is generally recommended to assess per assignment and
not per student, as students can build a reputation throughout an assess-
ment (Malouff & Thorsteinsson, 2016). As a result, they might be rated
more favourably with a moderate solution if they had excellent solutions for
assignments that were assessed previously, and vice versa (Malouff et al.,
2013). Assessment per assignment breaks this reputation as it interferes
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Figure 2.10: Pseudonymized overview of an evaluation in Dodona. For each
student, both the correctness of their submission and whether it
has been graded is shown.
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less with the quality of previously assessed assignments from the same
student. Possible bias from the same sequence effect is reduced during
assessment per assignment as students are visited in random order for
each assignment in the evaluation. In addition, anonymous mode can
be activated as a measure to eliminate the actual or perceived halo effect
conveyed through seeing a student’s name during assessment (Lebuda
& Karwowski, 2013). While anonymous mode is active, all students are
automatically pseudonymized. Anonymous mode is not restricted to the
context of assessment and can be used across Dodona, for example while
giving in-class demos.

When reviewing a selected submission from a student, assessors have direct
access to the feedback that was previously generated during automated
assessment: source code annotations in the “Code” tab and other structured
and unstructured feedback in the remaining tabs. Moreover, next to the
feedback that was made available to the student, the specification of the
assignment may also add feedback generated by the judge that is only
visible to the assessor. Assessors might then complement the assessment
made by the judge by adding source code annotations as formative
feedback and by grading the evaluative criteria in a scoring rubric as
summative feedback (Figure 2.11).

Previous annotations can be reused to speed up the code review process,
because remarks or suggestions tend to recur frequently when reviewing
submissions for the same assignment. Grading requires setting up a specific
scoring rubric for each assignment in the evaluation, as a guidance for
evaluating the quality of submissions (Dawson, 2017; Popham, 1997). The
evaluation tracks which submissions have been manually assessed, so that
analytics about the assessment progress can be displayed and to allow
multiple assessors working simultaneously on the same evaluation, for
example one (part of a) programming assignment each.

2.9 Conclusion
As we have shown in this chapter, a platform like Dodona needs a lot
more features than just automated assessment and feedback. Features like
course management and user management allow teachers to manage their
students, while infrastructure around exercises such as repositories and
our judges are required to allow them to easily add exercises. Additional
features like Q&A, code reviews, and evaluations make sure that teachers
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Figure 2.11: Manual assessment of a submission: a teacher (Miss Honey) is
giving feedback on the source code by adding inline annotations and
is grading the submission by filling up the scoring rubric that was
set up for the programming assignment “The Feynman ciphers”.
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can interact with their students, while having the context they are talking
about near their interactions. Creating a platform like Dodona entails a
lot of work to get these things right.
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This chapter answers the question how Dodona is used and shows how it
creates an active learning environment. We start by mentioning some facts
and figures, and discussing a user study we performed. We then explain
how Dodona can be used on the basis of a case study. This case study also
provides insight into the educational context for the research described in
Chapters 5 and 6.

This chapter is partially based on Van Petegem, C., Maertens, R.,
Strijbol, N., Van Renterghem, J., Van der Jeugt, F., De Wever, B., Daw-
yndt, P., Mesuere, B., 2023. Dodona: Learn to code with a virtual
co-teacher that supports active learning. SoftwareX 24, 101578. The
course described in this chapter was mostly developed by prof. Peter
Dawyndt, but has also seen numerous contributions by teaching assistents.

3.1 Facts and figures
Dodona’s design decisions have allowed it to spread to more than 1 800
schools and higher education institutions, mainly in Flanders (Belgium)
and the Netherlands. The renewed interest in embedding computational
thinking in formal education has undoubtedly been an important stimulus
for such a wide uptake (Wing, 2006). All other educational institutions
use the instance of Dodona hosted at Ghent University, which is free to
use for educational purposes.

Dodona currently hosts a collection of 17 500 learning activities that are
freely available to all teachers, allowing them to create their own learning
paths tailored to their teaching practice. In total, 70 000 students have
submitted more than 18 million solutions to Dodona in the seven years
that it has been running (Figures 3.1, 3.2 & 3.3).

In the year 2023, the highest number of monthly active users was reached in
November, when 9 678 users submitted at least one solution. About half of
these users are from secondary education, a quarter from Ghent University,
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Figure 3.1: Overview of the number of submitted solutions by academic year.
Note that the data for the academic year 2023–2024 is incomplete,
since the academic year has not finished yet at the time of data
collection (March 2024).
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Figure 3.2: Overview of the number of active users by academic year. Users were
active when they submitted at least one solution for a programming
assignment during the academic year. Note that the data for the
academic year 2023–2024 is incomplete, since the academic year has
not finished yet at the time of data collection (March 2024).
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Figure 3.3: Overview of the number of active users by academic year per insti-
tution type. Users were active when they submitted at least one
solution for a programming assignment during the academic year.
Note that the data for the academic year 2023–2024 is incomplete,
since the academic year has not finished yet at the time of data
collection (March 2024).

36



3.1 Facts and figures

and the rest mostly from other higher education institutions. Every year,
we see the largest increase of new users during September, where the same
ratios between Ghent University, higher, and secondary education are kept.
The record for most submissions in one day was recently broken on the
12th of January 2024, when the course described in Section 3.2 had one
exam for all students for the first time in its history, and those students
submitted 38 771 solutions in total. Interestingly enough, the day before
(the 11th of January) was the third-busiest day ever. The day with the
most distinct users was the 23rd of October 2023, when there were 2 680
users who submitted at least one solution. This is due to the fact that
there were a lot of exercise sessions on Fridays in the first semester of the
academic year; a lot of the other Fridays at the start of the semester are
also in the top 10 of busiest days ever (both in submissions and in number
of users). The full top 10 of submissions can be seen in Table 3.1. The
top 10 of active users can be seen in Table 3.2.

Date # submissions
2024-01-12 38 771
2023-10-23 38 431
2024-01-11 38 148
2020-01-22 33 161
2023-10-09 32 668
2019-01-23 32 464
2023-10-02 32 447
2019-01-24 32 113
2023-11-06 30 896
2023-10-16 30 103

Table 3.1: Top 10 of days with the most submissions on Dodona. This analysis
was done in March 2024.

In addition to the quantitative figures above, we also performed a qual-
itative user experience study of Dodona in 2018. 271 tertiary education
students responded to a questionnaire that contained the following three
questions: i) What are the things you value while working with Dodona?
ii) What are the things that bother you while working with Dodona?
iii) What are your suggestions for improvements to Dodona? Students
praised its user-friendliness, beautiful interface, immediate feedback with
visualized differences between expected and generated output, integration
of the Python Tutor, linting feedback and large number of test cases.
Negative points were related to differences between the students’ local
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Date # active users
2023-10-23 2 680
2023-10-09 2 659
2023-11-20 2 581
2023-10-02 2 381
2023-10-16 2 364
2023-11-06 2 343
2023-10-17 2 287
2023-11-27 2 274
2022-10-03 2 265
2023-11-13 2 167

Table 3.2: Top 10 of days with the most users who submitted at least once on
Dodona. This analysis was done in March 2024.

execution environments and the environment in which Dodona runs the
tests, and the strictness with which the tests are evaluated. Other negative
feedback was mostly related to individual courses the students were taking
instead of the platform itself.

3.2 Use in a programming course
Since the academic year 2011–2012 we have organized an introductory
Python course at Ghent University (Belgium) with a strong focus on active
and online learning. Initially the course was offered twice a year in the first
and second term, but from academic year 2014–2015 onwards it was only
offered in the first term. The course is taken by a mix of undergraduate,
graduate, and postgraduate students enrolled in various study programmes
(mainly formal and natural sciences, but not computer science), with 442
students enrolled for the 2021–2022 edition20.

3.2.1 Course structure
Each course edition has a fixed structure, with 13 weeks of educational
activities subdivided in two successive instructional units that each cover
five topics of the Python programming language – one topic per week –
followed by a graded test about all topics covered in the unit (Figure 3.4).
20https://dodona.be/courses/773/
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The final exam at the end of the term evaluates all topics covered in
the entire course. Students who fail the course during the first exam in
January can take a resit exam in August/September that gives them a
second chance to pass the course.

Figure 3.4: Top: Structure of the Python course that runs each academic year
across a 13-week term (September–December). Students submit
solutions for ten series with six mandatory assignments, two tests with
two assignments and an exam with three assignments. There is also a
resit exam with three assignments in August/September if they failed
the first exam in January. Bottom: Heatmap from Dodona learning
analytics page showing distribution per day of all 331 734 solutions
submitted during the 2021–2022 edition of the course (442 students).
The darker the colour, the more solutions were submitted that day.
Weekly lab sessions for different groups on Monday afternoon, Friday
morning and Friday afternoon, where we can see darker squares.
Weekly deadlines for mandatory assignments on Tuesdays at 22:00.
Three exam sessions for different groups in January. Two more exam
sessions for different groups in August/September.

In the regular weeks, when a new programming topic is covered, students
prepare themselves by reading the textbook chapters covering the topic,
following the flipped classroom approach (Akçayır & Akçayır, 2018; Bishop
& Verleger, 2013). Lectures are interactive programming sessions that
aim at bridging the initial gap between theory and practice, advancing
concepts, and engaging in collaborative learning (Tucker, 2012). Along
the same lines, the first assignment for each topic is an ISBN-themed
programming challenge whose model solution is shared with the students,
together with an instructional video that works step-by-step towards the
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model solution. Students must then try to solve five other programming
assignments on that topic before a deadline one week later. That results
in 60 mandatory assignments across the semester. Students can work on
their programming assignments during weekly computer labs, where they
can collaborate in small groups and ask help from teaching assistants.
They can also work on their assignments and submit solutions outside lab
sessions. In addition to the mandatory assignments, students can further
elaborate on their programming skills by tackling additional programming
exercises they select from a pool of over 900 exercises linked to the ten
programming topics. Submissions for these additional exercises are not
taken into account in the final grade.

3.2.2 Assessment, feedback and grading
We use Dodona to promote students’ active learning through problem-
solving (Prince, 2004). Each course edition has its own dedicated course
in Dodona, with a learning path containing all mandatory, test, and exam
assignments grouped into series with corresponding deadlines. Mandatory
assignments for the first unit are published at the start of the semester,
and those for the second unit after the test of the first unit. For each test
and exam we organize multiple sessions for different groups of students.
Assignments for test and exam sessions are provided in a hidden series that
is only accessible for students participating in the session using a shared
token link. The test and exam assignments are published afterwards
for all students, when grades are announced. Students can see class
progress when working on their mandatory assignments, nudging them to
avoid procrastination. Only teachers can see class progress for test and
exam series so as not to accidentally stress out students. For the same
reason, we intentionally organize tests and exams following exactly the
same procedure, so that students can take high-stake exams in a familiar
context and adjust their approach based on previous experiences. The only
difference is that test assignments are not as hard as exam assignments, as
students are still in the midst of learning programming skills when tests
are taken.

Students are stimulated to use an integrated development environment
(IDE) to work on their programming assignments. IDEs bundle a battery of
programming tools to support today’s generation of software developers in
writing, building, running, testing, and debugging software. Working with
such tools can be a true blessing for both seasoned and novice programmers,
but there is no silver bullet (Brooks & Kugler, 1987). Learning to code
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remains inherently hard (Kelleher et al., 2002) and consists of challenges
that are different to reading and learning natural languages (Fincher, 1999).
As an additional aid, students can continuously submit (intermediate)
solutions for their programming assignments and immediately receive
automatically generated feedback upon each submission, even during tests
and exams. Guided by that feedback, they can track potential errors
in their code, remedy them and submit updated solutions. There is no
restriction on the number of solutions that can be submitted per assignment.
All submitted solutions are stored, but for each assignment only the last
submission before the deadline is taken into account to grade students. This
allows students to update their solutions after the deadline (i.e. after model
solutions are published) without impacting their grades, as a way to further
practice their programming skills. One effect of active learning, triggered
by mandatory assignments with weekly deadlines and intermediate tests,
is that most learning happens during the term (Figure 3.4). In contrast to
other courses, students do not spend a lot of time practising their coding
skills for this course in the days before an exam. We want to explicitly
encourage this behaviour, because we strongly believe that one can not
learn to code in a few days’ time (Norvig, 2001).

For the assessment of tests and exams, we follow the line of thought that
human expert feedback through source code annotations is a valuable
complement to feedback coming from automated assessment, and that
human interpretation is an absolute necessity when it comes to grading (Ala-
Mutka, 2005; Jackson & Usher, 1997; Staubitz et al., 2015). We shifted
from paper-based to digital code reviews and grading when support for
manual assessment was released in version 3.7 of Dodona (summer 2020).
Although online reviewing positively impacted our productivity, the biggest
gain did not come from an immediate speed-up in the process of generating
feedback and grades compared to the paper-based approach. While time-
on-task remained about the same, our online source code reviews were
much more elaborate than what we produced before on printed copies of
student submissions. This was triggered by improved reusability of digital
annotations and the foresight of streamlined feedback delivery. Where
delivering custom feedback only requires a single click after the assessment
of an evaluation has been completed in Dodona, it took us much more
effort before to distribute our paper-based feedback. Students were direct
beneficiaries from more and richer feedback, as observed from the fact that
75% of our students looked at their personalized feedback within 24 hours
after it had been released, before we even published grades in Dodona.
What did not change is the fact that we complement personalized feedback
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with collective feedback sessions in which we discuss model solutions for
test and exam assignments, and the low numbers of questions we received
from students on their personalized feedback. As a future development,
we hope to reduce the time spent on manual assessment through improved
computer-assisted reuse of digital source code annotations in Dodona (see
Chapter 6).

We primarily rely on automated assessment as a first step in providing
formative feedback while students work on their mandatory assignments.
After all, a back-of-the-envelope calculation tells us it would take us 72
full-time equivalents (FTE) to generate equivalent amounts of manual
feedback for mandatory assignments compared to what we do for tests
and exams. In addition to volume, automated assessment also yields the
responsiveness needed to establish an interactive feedback loop (Gibbs &
Simpson, 2005). Automated assessment thus allows us to motivate students
working through enough programming assignments and to stimulate their
self-monitoring and self-regulated learning (Pintrich, 1995; Schunk &
Zimmerman, 1994). It results in triggering additional questions from
students that we manage to respond to with one-to-one personalized human
tutoring, either synchronously during hands-on sessions or asynchronously
through Dodona’s Q&A module. We observe that individual students seem
to have a strong bias towards either asking for face-to-face help during
hands-on sessions or asking questions online. This could be influenced
by the time when they mainly work on their assignments, by their way
of collaboration on assignments, or by reservations because of perceived
threats to self-esteem or social embarrassment (Karabenick & Knapp, 1991;
Newman & Schwager, 1993).

In computing a final score for the course, we try to find an appropriate
balance between stimulating students to find solutions for programming
assignments themselves and collaborating with and learning from peers,
instructors and teachers while working on assignments. The final score is
computed as the sum of a score obtained for the exam (80%) and a score
for each unit that combines the student’s performance on the mandatory
and test assignments (10% per unit). We use Dodona’s grading module to
determine scores for tests and exams based on correctness, programming
style, choice made between the use of different programming techniques
and the overall quality of the implementation. The score for a unit is
calculated as

s× f
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where s is the score for the two test assignments and f is the fraction of
mandatory assignments the student has solved correctly. A solution for
a mandatory assignment is considered correct if it passes all unit tests.
Evaluating mandatory assignments therefore does not require any human
intervention, except for writing unit tests when designing the assignments,
and is performed entirely by our Python judge. In our experience, most
students traditionally perform much better on mandatory assignments
compared to test and exam assignments (Glass & Kang, 2022), given the
possibilities for collaboration on mandatory assignments.

3.2.3 Open and collaborative learning environment
We strongly believe that effective collaboration among small groups of
students is beneficial for learning (Prince, 2004), and encourage students
to collaborate and ask questions to tutors and other students during
and outside lab sessions. We also demonstrate how they can embrace
collaborative coding and pair programming services provided by modern
integrated development environments (Hanks et al., 2011; Williams et al.,
2002). However, we do recommend them to collaborate in groups of no
more than three students, and to exchange and discuss ideas and strategies
for solving assignments rather than sharing literal code with each other.
After all, our main reason for working with mandatory assignments is to
give students sufficient opportunity to learn topic-oriented programming
skills by applying them in practice, and shared solutions spoil the learning
experience. The factor f in the score for a unit encourages students to
keep fine-tuning their solutions for programming assignments until all
test cases succeed before the deadline passes. But maximizing that factor
without proper learning of programming skills will likely yield a low test
score s and thus an overall low score for the unit, even if many mandatory
exercises were solved correctly.

Fostering an open collaboration environment to work on mandatory assign-
ments with strict deadlines and taking them into account for computing
the final score is a potential promoter for plagiarism, but using it as
a weight factor for the test score rather than as an independent score
item should promote learning by avoiding that plagiarism is rewarded.
It takes some effort to properly explain this to students. We initially
used MOSS (Schleimer et al., 2003) and now use Dolos (Maertens et al.,
2022) to monitor submitted solutions for mandatory assignments, both
before and at the deadline. The solution space for the first few man-
datory assignments is too small for linking high similarity to plagiarism:

43



3 Dodona in educational practice

submitted solutions only contain a few lines of code and the diversity of
implementation strategies is small. But at some point, as the solution
space broadens, we start to see highly similar solutions that are reliable
signals of code exchange among larger groups of students. Strikingly this
usually happens among students enrolled in the same study programme
(Figure 3.5). As soon as this happens – typically in week 3 or 4 of the
course – plagiarism is discussed during the next lecture. Usually this is
a lecture about working with the string data type, so we can introduce
plagiarism detection as a possible application of string processing.

Figure 3.5: Dolos plagiarism graphs for the Python programming assignment
“π-ramidal constants” that was created and used for a test of the
2020–2021 edition of the course (left) and reused as a mandatory
assignment in the 2021–2022 edition (right). Graphs constructed
from the last submission before the deadline of 142 and 382 students
respectively. The colour of each node represents the student’s study
programme. Edges connect highly similar pairs of submissions, with
similarity threshold set to 0.8 in both graphs. Edge directions are
based on submission timestamps in Dodona. Clusters of connected
nodes are highlighted with a distinct background colour and have one
node with a solid border that indicates the first correct submission
among all submissions in that cluster. All students submitted unique
solutions during the test, except for two students who confessed they
exchanged a solution during the test. Submissions for the mandatory
assignment show that most students work either individually or in
groups of two or three students, but we also observe some clusters of
four or more students that exchanged solutions and submitted them
with hardly any varying types and amounts of modifications.
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In an announcement entitled “copy-paste 6= learn to code” we show students
some pseudonymized Dolos plagiarism graphs that act as mirrors to make
them reflect upon which node in the graph they could be (Figure 3.5).
We stress that the learning effect dramatically drops in groups of four or
more students. Typically, we notice that in such a group only one or a
few students make the effort to learn to code, while the other students
usually piggyback by copy-pasting solutions. We make students aware
that understanding someone else’s code for programming assignments is
a lot easier than trying to find solutions themselves. Over the years, we
have experienced that a lot of students are caught in the trap of genuinely
believing that being able to understand code is the same as being able to
write code that solves a problem until they take a test at the end of a unit.
That’s where the s factor of the test score comes into play. After all, the
goal of summative tests is to evaluate if individual students have acquired
the skills to solve programming challenges on their own.

When talking to students about plagiarism, we also point out that the
plagiarism graphs are directed graphs, indicating which student is the
potential source of exchanging a solution among a cluster of students. We
specifically address these students by pointing out that they are probably
good at programming and might want to exchange their solutions with
other students in a way to help their peers. Instead of really helping them
out though, they actually take away learning opportunities from their
fellow students by giving away the solution as a spoiler. Stated differently,
they help maximize the factor f but effectively also reduce the s factor of
the test score, where both factors need to be high to yield a high score
for the unit. After this lecture, we usually notice a stark decline in the
number of plagiarized solutions.

The goal of plagiarism detection at this stage is prevention rather than
penalization, because we want students to take responsibility over their
learning. The combination of realizing that teachers and instructors can
easily detect plagiarism and an upcoming test that evaluates if students
can solve programming challenges on their own, usually has an immediate
and persistent effect on reducing cluster sizes in the plagiarism graphs
to at most three students. At the same time, the signal is given that
plagiarism detection is one of the tools we have to detect fraud during tests
and exams. The entire group of students is only addressed once about
plagiarism, without going into detail about how plagiarism detection
itself works, because we believe that overemphasizing this topic is not very
effective and explaining how it works might drive students towards spending
time thinking on how they could bypass the detection process, which is
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time they’d better spend on learning to code. Every three or four years
we see a persistent cluster of students exchanging code for mandatory
assignments over multiple weeks. If this is the case, we individually
address these students to point them again on their responsibilities, again
differentiating between students that share their solution and students
that receive solutions from others.

Tests and exams, on the other hand, are taken on-campus under human
surveillance and allow no communication with fellow students or other
persons (and, more recently, also no generative AI). Students can work
on their personal computers and get exactly two hours to solve two pro-
gramming assignments during a test, and three hours and thirty minutes
to solve three programming assignments during an exam.

Tests and exams are “open book/open Internet”, so any hard copy and
digital resources can be consulted while solving test or exam assignments.
Students are instructed that they can only be passive users of the Internet:
all information available on the Internet at the start of a test or exam can
be consulted, but no new information can be added. When taking over
code fragments from the Internet, students have to add a proper citation
as a comment in their submitted source code.

After each test and exam, we again use MOSS/Dolos to detect and in-
spect highly similar code snippets among submitted solutions and to find
convincing evidence they result from exchange of code or other forms
of interpersonal communication (Figure 3.5). If we catalogue cases as
plagiarism beyond reasonable doubt, the examination board is informed
to take further action (Maertens et al., 2022).

3.2.4 Workload for running a course edition
To organize “open book/open Internet” tests and exams that are valid
and reliable, we always create new assignments and avoid assignments
whose solutions or parts thereof are readily available online. At the start
of a test or exam, we share a token link that gives students access to the
assignments in a hidden series on Dodona.

For each edition of the course, mandatory assignments were initially a
combination of selected test and exam exercises reused from the previous
edition of the course and newly designed exercises. The former to give
students an idea about the level of exercises they can expect during tests
and exams, and the latter to avoid solution slippage. As feedback for the
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students we publish sample solutions for all mandatory exercises after the
weekly deadline has passed. This also indicates that students must strictly
adhere to deadlines, because sample solutions are available afterwards. As
deadlines are very clear and adjusted to timezone settings in Dodona, we
never experience discussions with students about deadlines.

After nine editions of the course, we felt we had a large enough portfolio
of exercises to start reusing mandatory exercises from four or more years
ago instead of designing new exercises for each edition. However, we still
continue to design new exercises for each test and exam. After each test
and exam, exercises are published and students receive manual reviews on
the code they submitted, on top of the automated feedback they already
got during the test or exam. But in contrast to mandatory exercises
we do not publish sample solutions for test and exam exercises, so that
these exercises can be reused during the next edition of the course. When
students ask for sample solutions of test or exam exercises, we explain
that we want to give the next generation of students the same learning
opportunities they had.

So far, we have created more than 900 programming assignments for this
introductory Python course alone. All these assignments are publicly
shared on Dodona as open educational resources (Caswell et al., 2008;
Downes, 2007; Hylén, 2021; Tuomi, 2013; Wiley et al., 2014). They are used
in many other courses on Dodona (on average 10.8 courses per assignment)
and by many students (on average 503.7 students and 4 801.5 submitted
solutions per assignment). We estimate that it takes about 10 person-hours
on average to create a new assignment for a test or an exam: 2 hours
for coming up with an idea, 30 minutes for implementing and tweaking a
sample solution that meets the educational goals of the assignment and
can be used to generate a test suite for automated assessment, 4 hours for
describing the assignment (including background research), 30 minutes for
translating the description from Dutch into English, one hour to configure
support for automated assessment, and another 2 hours for reviewing the
result by some extra pairs of eyes.

Generating a test suite usually takes 30 to 60 minutes for assignments that
can rely on basic test and feedback generation features that are built into
the judge. The configuration for automated assessment might take 2 to 3
hours for assignments that require more elaborate test generation or that
need to extend the judge with custom components for dedicated forms
of assessment (e.g. assessing non-deterministic behaviour) or feedback
generation (e.g. generating visual feedback). Keuning et al. (2018) found
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that publications rarely describe how difficult and time-consuming it is
to add assignments to automated assessment platforms, or even if this is
possible at all.

The ease of extending Dodona with new programming assignments is reflec-
ted by more than 17 500 assignments that have been added to the platform
so far. Our experience is that configuring support for automated assess-
ment only takes a fraction of the total time for designing and implementing
assignments for our programming course, and in absolute numbers stays
far away from the one person-week reported for adding assignments to
Bridge (Bonar & Cunningham, 1988). Because the automated assessment
infrastructure of Dodona provides common resources and functionality
through a Docker container and a judge, the assignment-specific configura-
tion usually remains lightweight. Only around 5% of the assignments need
extensions on top of the built-in test and feedback generation features of
the judge.

So how much effort does it cost us to run one edition of our programming
course? For the most recent 2021–2022 edition we estimate about 34
person-weeks in total (Table 3.3), the bulk of which is spent on on-campus
tutoring of students during hands-on sessions (30%), manual assessment
and grading (22%), and creating new assignments (21%). About half
of the workload (53%) is devoted to summative feedback through tests
and exams: creating assignments, supervision, manual assessment and
grading. Most of the other work (42%) goes into providing formative
feedback through on-campus and online assistance while students work
on their mandatory assignments. Out of 2 215 questions that students
asked through Dodona’s online Q&A module, 1 983 (90%) were answered
by teaching assistants and 232 (10%) were marked as answered by the
student who originally asked the question. Because automated assessment
provides first-line support, the need for human tutoring is already heavily
reduced. We have drastically cut the time we initially spent on mandatory
assignments by reusing existing assignments and because the Python judge
is stable enough to require hardly any maintenance or further development.

3.2.5 Learning analytics and educational data mining
A longitudinal analysis of student submissions across the term shows that
most learning happens during the 13 weeks of educational activities and
that students do not have to catch up practising their programming skills
during the exam period (Figure 3.4). Active learning thus effectively avoids
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Task Estimated workload (hours)
Lectures 60
Mandatory assignments 540

Select assignments 10
Review selected assignments 30
Tips & tricks 10
Automated assessment 0
Hands-on sessions 390
Answering online questions 100

Tests & exams 690
Create new assignments 270
Supervise tests and exams 130
Automated assessment 0
Manual assessment 288
Plagiarism detection 2

Total 1 290

Table 3.3: Estimated workload to run the 2021–2022 edition of the introductory
Python programming course for 442 students with 1 lecturer, 7 teach-
ing assistants and 3 undergraduate students who serve as teaching
assistants (Gordon et al., 2013).
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procrastination. We observe that students submit solutions every day of
the week and show increased activity around hands-on sessions and in
the run-up to the weekly deadlines (Figure 3.6). Weekends are also used
to work further on programming assignments, but students seem to be
watching over a good night’s sleep.

Figure 3.6: Punchcard from the Dodona learning analytics page showing the
distribution per weekday and per hour of all 331 734 solutions sub-
mitted during the 2021–2022 edition of the course (442 students).

Throughout a course edition, we use Dodona’s series analytics to monitor
how students perform on our selection of programming assignments (Fig-
ures 3.7, 3.8, and 3.9). This allows us to make informed decisions and
appropriate interventions, for example when students experience issues
with the automated assessment configuration of a particular assignment or
if the original order of assignments in a series does not seem to align with
our design goal to present them in increasing order of difficulty. The first
students that start working on assignments usually are good performers.
Seeing these early birds having trouble with solving one of the assignments
may give an early warning that action is needed, such as improving the
problem specification, adding extra tips & tricks, or better explaining
certain programming concepts to all students during lectures or hands-
on sessions. Reversely, observing that many students postpone working
on their assignments until just before the deadline might indicate that
some assignments are simply too hard at this moment in time through
the learning pathway of the students or that completing the collection of
programming assignments interferes with the workload from other courses.
Such “deadline hugging” patterns are also a good breeding ground for
students to resort on exchanging solutions among each other.

Using educational data mining techniques on historical data exported from
several editions of the course, we further investigated what aspects of
practising programming skills promote or inhibit learning, or have no or
minor effect on the learning process (see Chapter 5). It will not come as a
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Figure 3.7: Distribution of the number of student submissions per programming
assignment. The larger the zone, the more students submitted a
particular number of solutions. Black dot indicates the average
number of submissions per student.

Figure 3.8: Distribution of top-level submission statuses per programming as-
signment.

Figure 3.9: Progression over time of the percentage of students that correctly
solved each assignment. The visualisation starts two weeks before
the deadline, which is on the 19th of October.
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surprise that midterm test scores are good predictors for a student’s final
grade, because tests and exams are both summative assessments that are
organized and graded in the same way. However, we found that organizing
a final exam end-of-term is still a catalyst of learning, even for courses with
a strong focus of active learning during weeks of educational activities.

In evaluating if students gain deeper understanding when learning from
their mistakes while working progressively on their programming assign-
ments, we found the old adage that practice makes perfect to depend on
what kind of mistakes students make. Learning to code requires mastering
two major competences: i) getting familiar with the syntax and semantics
of a programming language to express the steps for solving a problem in
a formal way, so that the algorithm can be executed by a computer, and
ii) problem-solving itself. It turns out that staying stuck longer on compil-
ation errors (mistakes against the syntax of the programming language)
inhibits learning, whereas taking progressively more time to get rid of
logical errors (reflective of solving a problem with a wrong algorithm) as
assignments get more complex actually promotes learning. After all, time
spent in discovering solution strategies while thinking about logical errors
can be reclaimed multifold when confronted with similar issues in later
assignments (Glass & Kang, 2022).

These findings neatly align with the claim of Edwards et al. (2018) that
problem-solving is a higher-order learning task in the Taxonomy by Bloom
et al. (1956) (analysis and synthesis) than language syntax (knowledge,
comprehension, and application).

Using historical data from previous course editions, we can also make highly
accurate predictions about what students will pass or fail the current course
edition (see Chapter 5). This can already be done after a few weeks into
the course, so remedial actions for at-risk students can be started well in
time. The approach is privacy-friendly as we only need to process metadata
on student submissions for programming assignments and results from
automated and manual assessment extracted from Dodona. Given that
cohort sizes are large enough, historical data from a single course edition
are already enough to make accurate predictions.

3.3 Conclusion
Dodona has grown into a widely used automated assessment platform. As
we have shown in this chapter, both students and teachers alike appreciate
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its extensive feature set and user-friendliness. By exploiting all Dodona
features, it is possible to design and implement a highly activating course.
While there is still a lot of time invested in running a course like this, the
time Dodona saves can be reinvested in hands-on guidance of students and
giving manual feedback on evaluations and examinations.
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4 Under the hood: technical
architecture and design

Dodona and its ecosystem comprise a lot of code. This chapter answers
the question of what technical work goes into building a platform like
Dodona. We do this by discussing the technical background of Dodona
itself (Van Petegem et al., 2023). As mentioned in Chapter 2, Dodona is
the fruit of a collaborative effort of the entire Dodona team.

We also present a stand-alone online code editor, Papyros (https://
papyros.dodona.be), that was integrated into Dodona (De Ridder et al.,
2022). This work was done by Winnie De Ridder in his master’s thesis,
under supervision and guidance of myself, prof. Bart Mesuere and prof.
Peter Dawyndt.

We also discuss two judges that were developed in the context of this
dissertation. The R judge, which was written entirely by myself (Nüst et
al., 2020).

The TESTed judge was first prototyped in my master’s thesis (Van Petegem
& Dawyndt, 2018) and was further developed in two other master’s theses
by Niko Strijbol (Strijbol et al., 2020) and Boris Sels (Sels et al., 2021),
which I also supervised and guided along with prof. Peter Dawyndt.

In this chapter we assume the reader is familiar with Dodona’s features
and how they are used, as detailed in Chapters 2 and 3.

4.1 Dodona
To ensure that Dodona21 is robust against sudden increases in workload
and when serving hundreds of concurrent users, it has a multi-tier service
architecture that delegates different parts of the application to different
servers, as can be seen on Figure 4.1. More specifically, the web server,
21https://github.com/dodona-edu/dodona
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database (MySQL) and caching system (Memcached) each run on their
own machine. In addition, a scalable pool of interchangeable worker servers
are available to automatically assess incoming student submissions. In this
section, we will highlight a few of these components.

Figure 4.1: Diagram of all the servers involved with running and developing
Dodona. The role of each server in the deployment is listed below
its name. Worker servers are marked in blue, development servers
are marked in red. Servers are connected if they communicate with
each other. The direction of the connection signifies which server
initiates the connection. Every server also has an implicit connection
with Phocus (the monitoring server), since metrics such as load,
CPU usage, disk usage, etc. are collected and sent to Phocus on
every server. The Pandora server is greyed out because it has been
decommissioned (see Section 4.1.3 for more info).

4.1.1 The Dodona web application
The user-facing part of Dodona runs on the main web server, which is also
called Dodona (see Figure 4.1). Dodona is a Ruby-on-Rails web application,
currently running on Ruby 3.1 and Rails 7.1. We use Apache 2.4.52 to
proxy our requests to the actual application. We follow the Rails-standard
way of organizing functionality in models, views and controllers. In Rails,
requests are sent to the appropriate action in the appropriate controller
by the router. In these actions, models are queried and/or edited, after
which they are used to construct the data for a response. This data is
then rendered by the corresponding view, which can be HTML, JSON,
JavaScript, or even a CSV.

The way we handle complex logic in the frontend has seen a number of
changes along the years. When Dodona was started, there were only a few
places where JavaScript was used. Dodona also used the Rails-standard
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way of serving dynamically generated JavaScript to replace parts of pages
(e.g. for pagination or search). With the introduction of more complex
features like evaluations, we switched to using lightweight web components
where this made sense. We also eliminated jQuery, because more and more
of its functionality was implemented natively by browsers. And lastly, all
JavaScript was rewritten to TypeScript.

Security and performance

Another important aspect of running a public web application is its security.
Dodona needs to operate in a challenging environment where students sim-
ultaneously submit untrusted code to be executed on its servers (“remote
code execution as a service”) and expect automatically generated feedback,
ideally within a few seconds. Many design decisions are therefore aimed at
maintaining and improving the performance, reliability, and security of its
systems. This includes using Cloudflare as a CDN and common protections
such as a Content Security Policy or Cross Site Request Forgery protection,
but is also reflected in the implementation of Dodona itself, as we will
explain in this section.

Since Dodona grew from being used to teach mostly by people we knew
personally to being used in secondary schools all over Flanders, we went
from being able to fully trust exercise authors to having this trust reduced
(as it is impossible for a team of our size to vet all the people we give
teacher’s rights in Dodona). This meant that our threat model and
therefore the security measures we had to take also changed over the years.
Once Dodona was opened up to more and more teachers, we gradually
locked down what teachers could do with e.g. their exercise descriptions.
Content where teachers can inject raw HTML into Dodona was moved
to iframes, to make sure that teachers could still be as creative as they
wanted while writing exercises, while simultaneously not allowing them
to execute JavaScript in a session where users are logged in. For user
content where this creative freedom is not as necessary (e.g. series or
course descriptions), but some Markdown/HTML content is still wanted,
we sanitize the (generated) HTML so that it can only include HTML
elements and attributes that are specifically allowed.

One of the most important components of Dodona is the feedback shown
after a submission is evaluated (as seen in Figure 2.6). It has, therefore,
seen a lot of security, optimization and UI work over the years. Judge
and exercise authors (and even students, through their submissions) can
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determine a lot of the content that eventually ends up in the feedback.
Therefore, the same sanitization that is used for series and course descrip-
tions is used for the messages that are added to the feedback (since these
can contain Markdown and arbitrary HTML as well). The increase in
teachers that added exercises to Dodona also meant that the variety in
feedback given grew, sometimes resulting in a huge volume of testcases
and long output.

Optimization work was needed to cope with this volume of feedback.
For example, one of the biggest optimizations was in how expected and
generated feedback are diffed and how these diffs are rendered. When
Dodona was first written, the library used for creating diffs of the generated
and expected results (diffy22) actually shelled out to the GNU diff
command. This output was parsed and transformed into HTML by the
library using find and replace operations. As one can expect, starting a
new process and doing a lot of string operations every time outputs had
to be diffed resulted in very slow loading times. The library was replaced
with a pure Ruby library (diff-lcs23), and its outputs were built into
HTML using Rails’ efficient Builder class. This change of diffing method
also fixed a number of bugs we were experiencing along the way.

Even this was not enough to handle the most extreme of exercises though.
Diffing hundreds of lines hundreds of times still takes a long time, even
if done in-process while optimized by a JIT. The resulting feedback also
contained so much HTML that the browsers on our development machines
(which are pretty powerful machines) noticeably slowed down when loading
and rendering them. To handle these cases, we needed to do less work
and needed to output less HTML. We decided to only diff line-by-line
(instead of character-by-character) in most of these cases and to not diff at
all in the most extreme cases, reducing the amount of HTML required to
render them as well. This was also motivated by usability. If there are lots
of small differences between a very long generated and expected output,
the diff view in the feedback could also become visually overwhelming for
students.

4.1.2 Judging submissions
Student submissions are automatically assessed in background jobs by
our worker servers (Salmoneus, Sisyphus, Tantalus, Tityos and Ixion;
22https://github.com/samg/diffy
23https://github.com/halostatue/diff-lcs
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Figure 4.1). To divide the work over these servers we make use of a job
queue, based on delayed_job24. Each worker server has 6 job runners,
which regularly poll the job queue when idle.

For proper virtualization we use Docker containers (Peveler et al., 2019)
that use OS-level containerization technologies and define runtime envir-
onments in which all data and executable software (e.g. scripts, compilers,
interpreters, linters, database systems) are provided and executed. These
resources are typically pre-installed in the image of the container. Prior to
launching the actual assessment, the container is extended with the submis-
sion, the judge and the resources included in the assessment configuration
(Figure 4.2). Additional resources can be downloaded and/or installed
during the assessment itself, provided that Internet access is granted to the
container. When the container is started, limits are placed on the amount
of resources it can consume. This includes a limit in runtime, memory
usage, disk usage, network access and the number of processes a container
can have running at the same time. Some of these limits are (partially)
configurable per exercise, but sane upper bounds are always applied. This
is also the case for network access, where even if the container is allowed
internet access, it can not access other Dodona hosts (such as the database
server).

The actual assessment of the student submission is done by a software
component called a judge (Wasik et al., 2018). The judge must be robust
enough to provide feedback on all possible submissions for the assignment,
especially submissions that are incorrect or deliberately want to tamper
with the automatic assessment procedure (Forisek, 2006). Following the
principles of software reuse, the judge is ideally also a generic framework
that can be used to assess submissions for multiple assignments. This is
enabled by the submission metadata that is passed when calling the judge,
which includes the path to the source code of the submission, the path to
the assessment resources of the assignment and other metadata such as
programming language, natural language, time limit and memory limit.

Rather than providing a fixed set of judges, Dodona adopts a minimal-
istic interface that allows third parties to create new judges: automatic
assessment is bootstrapped by launching the judge’s run executable that
can fetch the JSON formatted submission metadata from standard input
and must generate JSON formatted feedback on standard output. The
feedback has a standardized hierarchical structure that is specified in a

24https://github.com/collectiveidea/delayed_job
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Figure 4.2: Outline of the procedure to automatically assess a student submis-
sion for a programming assignment. Dodona instantiates a Docker
container (1) from the image linked to the assignment (or from the
default image linked to the judge of the assignment) and loads the
submission and its metadata (2), the judge linked to the assignment
(3) and the assessment resources of the assignment (4) into the con-
tainer. Dodona then launches the actual assessment, collects and
bundles the generated feedback (5), and stores it into a database
along with the submission and its metadata.
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JSON schema25. At the lowest level, tests are a form of structured feed-
back expressed as a pair of generated and expected results. They typically
test some behaviour of the submitted code against expected behaviour.
Tests can have a brief description and snippets of unstructured feedback
called messages. Descriptions and messages can be formatted as plain
text, HTML (including images), Markdown, or source code. Tests can
be grouped into test cases, which in turn can be grouped into contexts
and eventually into tabs. All these hierarchical levels can have descrip-
tions and messages of their own and serve no other purpose than visually
grouping tests in the user interface. At the top level, a submission has
a fine-grained status that reflects the overall assessment of the submis-
sion: compilation error (the submitted code did not compile), runtime
error (executing the submitted code failed during assessment), memory
limit exceeded (memory limit was exceeded during assessment), time
limit exceeded (assessment did not complete within the given time),
output limit exceeded (too much output was generated during assess-
ment), wrong (assessment completed but not all strict requirements were
fulfilled), or correct (assessment completed, and all strict requirements
were fulfilled).

Taken together, a Docker image, a judge and a programming assignment
configuration (including both a description and an assessment configur-
ation) constitute a task package as defined by (Verhoeff, 2008): a unit
Dodona uses to render the description of the assignment and to automat-
ically assess its submissions. However, Dodona’s layered design embodies
the separation of concerns (Laplante, 2007) needed to develop, update
and maintain the three modules in isolation and to maximize their reuse:
multiple judges can use the same docker image and multiple programming
assignments can use the same judge. Related to this, an explicit design
goal for judges is to make the assessment configuration for individual
assignments as lightweight as possible. After all, minimal configurations
reduce the time and effort teachers and instructors need to create pro-
gramming assignments that support automated assessment. Sharing of
data files and multimedia content among the programming assignments
in a repository also implements the inheritance mechanism for bundle
packages as hinted by Verhoeff (2008). Another form of inheritance is
specifying default assessment configurations at the directory level, which
takes advantage of the hierarchical grouping of learning activities in a
repository to share common settings.

25https://github.com/dodona-edu/dodona/tree/main/public/schemas
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4.1.3 Python Tutor
The Python Tutor (Guo, 2013) is a debugger built into Dodona. It provides
timeline debugging, where for each step in the timeline, each corresponding
to a line being executed, all variables on the stack are visualized.

The deployment of the Python Tutor also saw a number of changes over
the years. The Python Tutor itself is written in Python, so could not be
part of Dodona itself. It started out as a Docker container on the same
server as the main Dodona web application. Because it is used mainly by
students who want to figure out their mistakes, the service responsible for
running student code could become overwhelmed and in extreme cases
even make the entire server unresponsive. After we identified this issue,
the Python Tutor was moved to its own server (Pandora in Figure 4.1).
This did not fix the Tutor itself becoming overwhelmed however, which
meant that students that depended on the Tutor were sometimes unable
to use it. This of course happened more during periods where the Tutor
was being used a lot, such as evaluations and exams. One can imagine that
the experience for students who are already quite stressed out about the
exam they are taking when the Tutor suddenly failed was not very good.
In the meantime, we had started to experiment with running Python code
client-side in the browser (see Section 4.2 for more info). Because these
experiments were successful, we migrated the Python Tutor from its own
server to being run by students in their own browser using Pyodide. This
means that the only student that can be impacted by the Python Tutor
failing for a testcase is the student themselves (and because the Tutor
is being run on a device that is under a far less heavy load, the Python
Tutor fails much less often). In practice, we got no questions or complaints
about the Python Tutor’s performance after these changes, even during
exams where 460 students were submitting simultaneously.

4.1.4 Development process
Development of Dodona is done on GitHub. Over the years, Dodona has
seen over 16 500 commits by 26 contributors, and there have been 343
releases. All new features and bug fixes are added to the main branch
through pull requests, of which there have been about 4 000. These
pull requests are reviewed by (at least) two developers of the Dodona
team before they are merged. We also treat pull requests as a form of
internal documentation by writing an extensive description and adding
screenshots for all visual changes or additions. The extensive test suite
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also runs automatically for every pull request (using GitHub Actions), and
developers are encouraged to add new tests for each feature or bug fix.
We’ve also made it very easy to deploy to our testing (Mestra) and staging
(Naos) environments so that reviewers can test changes without having to
spin up their local development instance of Dodona. These are the two
unconnected servers seen in Figure 4.1. Mestra runs a Dodona instance
much like the instance developers use locally. There is no production data
present and in fact, the database is wiped and reseeded on every deploy.
Naos is much closer to the production setup. It runs on a pseudonymized
version of the production database, and has all the judges configured.

We also make sure that our dependencies are always up-to-date using
Dependabot26. By updating our dependencies regularly, we make sure
that we are not met by incompatibilities that take a long time to integrate
when there is an important security update. Since Dodona is accessible
over the public web, it would be problematic if we could not quickly apply
security updates.

The way we release Dodona has seen a few changes over the years. We’ve
gone from a few large releases with bugfix point-releases between them, to
lots of smaller releases, to now a release per pull request. Releasing every
pull request immediately after merging makes getting feedback from our
users a very quick process. When we did versioned releases we also wrote
release notes at the time of release. Because we do not have versioned
releases any more, we now bundle the changes into release notes for every
month. They are mostly autogenerated from the merged PRs, but bigger
features are given more context and explanation.

4.1.5 Deployment process
After a pull request is merged, it is automatically deployed by a GitHub
action. This action first runs all the tests again, deploys to the staging
server and then deploys to the production servers. Since Naos has a copy
of the production database, the deploy would be stopped if there are any
migrations that fail in production. This way we can be sure the actual
production database is never in an inconsistent migration state. The actual
deployment is done by Capistrano27. Capistrano allows us to roll back

26https://docs.github.com/en/code-security/dependabot/
working-with-dependabot

27https://capistranorb.com/
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any deploys and makes clever use of symlinking to make sure that deploys
happen without any service interruption.

Backups of the database are automatically saved every day and kept for
12 months. The backups are rotated according to a grandfather-father-
son scheme (Jessen, 2010). The backups are taken by dumping a replica
database. The replica database is used because dumping the main database
write-locks it while it is being dumped, which would result in Dodona
being unusable for a significant amount of time. We regularly test the
backups by restoring them on Naos.

We also have an extensive monitoring and alerting system in place, based
on Grafana28. This gives us some superficial analytics about Dodona
usage, but can also tell us if there are problems with one of our servers.
See Figure 4.3 for an example of the data this dashboard gives us. The
analytics are also calculated using the replica database to avoid putting
unnecessary load on our main production database.

The web server and worker servers also send notifications when an error
occurs in their runtime. This is one of the main ways we discover bugs
that got through our tests, since our users do not regularly report bugs
themselves. We also get notified when there are long-running requests,
since we consider our users having to wait a long time to see the page they
requested a bug in itself. These notifications were an important driver to
optimize some pages or to make certain operations asynchronous.

4.2 Papyros
Papyros29 is a stand-alone basic online IDE we developed, primarily focused
on secondary education (see Figure 4.4 for a screenshot). Recurring
feedback we got from secondary education teachers when introducing
Dodona to them was that Dodona did not have a simple way for students
to run and test their code themselves. Testing their code in this case also
means manually typing a response to an input prompt when an input
statement is run by the interpreter. In the educational practice that
Dodona was born out of, this was an explicit design goal. We wanted to
guide students to use an IDE locally instead of programming in Dodona
directly, since if they needed to program later in life, they would not
have Dodona available as their programming environment. This same
28https://grafana.com/
29https://github.com/dodona-edu/papyros
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Figure 4.3: Grafana dashboard for Dodona, giving a quick overview of important
metrics.
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goal is not present in secondary education. In that context, the challenge
of programming is already big enough, without complicating things by
installing a real IDE with a lot of buttons and menus that students will
never use. Students might also be working on devices that they do not own
(PCs in the school), where installing an IDE might not even be possible.

Figure 4.4: User interface of Papyros. The editor can be seen on the left, with
the output window to the right of it. The input window is below the
output window and is currently in batch mode. All empty text fields
have placeholder text that explains how they can be used.

There are a few reasons why we could not initially offer a simple online
IDE. Even though we can use a lot of the infrastructure very graciously
offered by Ghent University, these resources are not limitless. The extra
(interactive) evaluation of student code was something we did not have the
resources for, nor did we have any architectural components in place to
easily integrate this into Dodona. The main goal of Papyros was thus to
provide a client-side Python execution environment we could then include
in Dodona. We focused on Python because it is the most widely used
programming language in secondary education, at least in Flanders. Note
that we do not want to replace Dodona’s entire execution model with
client-side execution, as the client is an untrusted execution environment
where debugging tools could be used to manipulate the results. Because
the main idea is integration in Dodona, we primarily wanted users to be
able to execute entire programs, and not necessarily offer a REPL at first.
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Given that the target audience for Papyros is secondary education students,
we identified a number of secondary requirements:

• The editor of our online IDE should have syntax highlighting. Recent
literature (Hannebauer et al., 2018) has shown that this does not
necessarily have an impact on students’ learning, but as the authors
point out, it was the prevailing wisdom for a long time that it does
help.

• It should also include linting. Linters notify students about syntax
errors, but also about style guide violations and anti-patterns.

• Error messages for errors that occur during execution should be
user-friendly (Becker et al., 2019).

• Code completion should be available. When starting out with pro-
gramming, it is hard to remember all the different functions available.
Completion frameworks allow students to search for functions, and
can show inline documentation for these functions.

4.2.1 Execution
Python can not be executed directly by a browser, since only JavaScript
and WebAssembly are natively supported. We investigated a number of
solutions for running Python code in the browser.

The first of these is Brython30. Brython works by transpiling Python
code to JavaScript, where the transpilation is implemented in JavaScript.
The project is conceptualized as a way to develop web applications in
Python, and not to run arbitrary Python code in the browser, so a lot of
its tooling is not directly applicable to our use case, especially concerning
interactive input prompts. It also runs on the main thread of the browser,
so executing a student’s code would freeze the browser until it is done
running.

Another solution we looked into is Skulpt31. It also transpiles Python
code to JavaScript, and supports Python 2 and Python 3.7. After loading
Skulpt, a global object is added to the page where Python code can be
executed through JavaScript.

30https://brython.info
31https://skulpt.org
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The final option we looked into was Pyodide32. Pyodide was initially
developed by Mozilla as part of their Iodide project, aiming to make
scientific research shareable and reproducible via the browser. It is now
a stand-alone project. Pyodide is a port of the Python interpreter to
WebAssembly, allowing it to be executed by the browser. Since the project
is focused on scientific research, it has wide support for external libraries
such as NumPy. Because Pyodide can be treated as a regular JavaScript
library, it can be run in a web worker, making sure that the page stays
responsive while the user’s code is being executed.

We also looked into integrating other platforms such as Repl.it, but all
of them were either not free or did not provide a suitable interface for
integration. We chose to base Papyros on Pyodide given its active devel-
opment, support for recent Python versions and its ability to be executed
on a separate thread.

4.2.2 Implementation
There are two aspects to the implementation: the user interface and the
technical inner workings. Given that this work will primarily be used by
secondary school students, the user interface is an important part of this
work that should not be neglected.

User interface

The most important choice in the user interface was the choice of the
editor. There were three main options: i) Ace33, ii) Monaco34, and
iii) CodeMirror35.

Ace was the editor used by Dodona at the time. It supports syntax high-
lighting and has some built-in linting. However, it is not very extensible, it
does not support mobile devices well, and it’s no longer actively developed.

Monaco is the editor extracted from Visual Studio Code and often used
by people building full-fledged web IDE’s. It also has syntax highlighting
and linting and is much more extensible. As with Ace though, support for
mobile devices is lacking.
32https://pyodide.org/en/stable
33https://ace.c9.io/
34https://microsoft.github.io/monaco-editor/
35https://codemirror.net/
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CodeMirror is a modern editor made for the web, and not linked to any
specific project. It is also extensible and has modular syntax highlighting
and linting support. In contrast with Ace and Monaco, it has very good
support for mobile devices. Its documentation is also very clear and
extensive. Given the clear advantages, we decided to use CodeMirror for
Papyros.

The two other main components of Papyros are the output window and
the input window. The output window is a simple read-only text area.
The input window is a text area that has two modes: interactive mode and
batch input. In interactive mode, the user is expected to write the input
needed by their program the moment it asks for it (similar to running
their program on the command line and answering the prompts when they
appear). In batch mode, the user can prefill all the input required by their
program.

Inner workings

Since Pyodide does the heavy lifting of executing the actual Python code,
most of the implementation work consisted of making Pyodide run in a
web worker and hooking up the Python internals to our user interface. The
communication between the main UI thread and the web worker happens
via message passing. With message passing, all data has to be copied. To
avoid having to copy large amounts of data, and to be able to copy actual
functions, classes or HTML elements, shared memory can be used. To
work correctly with shared memory, synchronization primitives have to be
used.

After loading Pyodide, we load a Python script that overwrites certain
functions with our versions. For example, base Pyodide will overwrite
input with a function that calls into JavaScript-land and executes prompt.
Since we’re running Pyodide in a web worker, prompt is not available (and
we want to implement custom input handling anyway). For input we
actually run into another problem: input is synchronous in Python. In
a normal Python environment, input will only return a value once the
user entered a line of text on the command line. We do not want to edit
user code (to make it asynchronous) because that process is error-prone
and fragile. So we need a way to make our overwritten version of input
synchronous as well.

The best way to do this is by using the synchronization primitives of
shared memory. We can block on some other thread writing to a certain
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memory location, and since blocking is synchronous, this makes our input
synchronous as well. Unfortunately, not all browsers supported shared
memory at the time. Other browsers also severely constrain the environ-
ment in which shared memory can be used, since a number of CPU side
channel attacks related to it were discovered.

Luckily, there is another way we can make the browser perform indefinite
synchronous operations from a web worker. Web workers can perform
synchronous HTTP requests. We can then intercept these HTTP requests
from a service worker. Service workers were originally conceived to allow
web applications to continue functioning even when devices go offline. In
that case, a service worker could respond to network requests with data it
has in its cache. So, putting this together, the web worker tells the main
thread that it needs input and then fires off a synchronous HTTP request
to some non-existent endpoint. The service worker intercepts this request,
and responds to the request once it receives some input from the main
thread.

The functionality for performing synchronous communication with the
main thread from a web worker was parcelled off into its own library
(sync-message36). This library could then decide which of these two
methods to use, depending on the available environment. Another pack-
age, python_runner37, bundles all required modifications to the Python
environment in Pyodide. This work was done in collaboration with Alex
Hall.

Extensions

CodeMirror already has a number of functionalities it supports out of
the box such as linting and code completion. It is, however, a pure
JavaScript library. This means that these functionalities had to be newly
implemented, since the standard tooling for Python is almost entirely
implemented in Python. Fortunately CodeMirror also supports supplying
one’s own linting message and code completion. Since we have a working
Python environment, we can also use it to run the standard Python tools
for linting (Pylint) and code completion (Jedi) and hook up their results to
CodeMirror. For code completion this has the added benefit of also showing
the documentation for the autocompleted items, which is especially useful
for people new to programming (which is exactly our target audience).
36https://github.com/alexmojaki/sync-message
37https://github.com/alexmojaki/python_runner
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Usability was further improved by adding the FriendlyTraceback library.
FriendlyTraceback is a Python library that changes error messages in
Python to be clearer to beginners, by explicitly answering questions such
as where and why an error occurred. An example of what this looks like
can be seen in Figure 4.5

Figure 4.5: Papyros execution where a student tried to add a type declaration to
a variable, which FriendlyTraceback shows a fitting error message
for.

4.3 R judge
Because Dodona had proven itself as a useful tool for teaching Python and
Java to students, colleagues teaching statistics started asking if we could
build R support into Dodona. We started working on an R judge38 soon
after. By now, more than 1 250 R exercises have been added, and almost
1 million submissions have been made to an R exercise.

Because R is the lingua franca of statistics, there are a few extra features
that come to mind that are not typically handled by judges, such as
handling of data frames and outputting visual graphs (or even evaluating
that a graph was built correctly). Another feature that teachers wanted
that we had not built into a judge previously was support for inspecting

38https://github.com/dodona-edu/judge-r
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the student’s source code, e.g. for making sure that certain functions were
or were not used.

4.3.1 Exercise API
The API for the R judge was designed to follow the visual structure of
the feedback shown as closely as possible, as can be seen in the sample
evaluation code in Listing 4.1. Tabs are represented by different evaluation
files. In addition to the testEqual function demonstrated in Listing 4.1
there are some other functions to specifically support the requested func-
tionality. testImage will set up some handlers in the R environment so
that generated plots (or other images) are sent as feedback (in a base-64
encoded string) instead of the filesystem. It will also by default make the
test fail if no image was generated (but does not do any verification of
the image contents). An example of what the feedback looks like when
an image is generated can be seen in Figure 4.6. testDF has some extra
functionality for testing the equality of data frames, where it is possible to
ignore row and column order. The generated feedback is also limited to 5
lines of output, to avoid overwhelming students (and their browsers) with
the entire table. testGGPlot can be used to introspect plots generated
with GGPlot (Wickham et al., 2023). To test whether students use certain
functions, testFunctionUsed and testFunctionUsedInVar can be used.
The latter tests whether the specific function is used when initializing a
specific variable.

If some code needs to be executed in the student’s environment before
the student’s code is run (e.g. to make some dataset available, or to fix
a random seed), the preExec argument of the context function can be
used to do so.

4.3.2 Security
Other than the API for teachers creating exercises, encapsulation of student
code is also an important part of a judge. Students should not be able
to access functions defined by the judge, or be able to find the correct
solution or the evaluating code. The R judge makes sure of this by making
extensive use of environments. This is also reflected in the teacher API:
they can access variables or execute functions in the student environment,
but this environment has to be explicitly passed to the function generating
the student result. In R, all environments except the root environment
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1 context({
2 testcase('The correct method was used', {
3 testEqual("test$alternative",
4 function(studentEnv) {
5 studentEnv$test$alternative
6 },
7 'two.sided')
8 testEqual("test$method",
9 function(studentEnv) {

10 studentEnv$test$method
11 },
12 ' Two Sample t-test')
13 })
14 testcase('p value is correct', {
15 testEqual("test$p.value",
16 function(studentEnv) {
17 studentEnv$test$p.value
18 },
19 0.175)
20 })
21 }, preExec = {
22 set.seed(20190322)
23 })

Listing 4.1: Sample evaluation code for a simple R exercise. The feedback will
contain one context with two test cases in it. The first test case
checks whether some t-test was performed correctly, and does this
by performing two equality checks. The second test case checks
that the p-value calculated by the t-test is correct. The preExec is
executed in the student’s environment and here fixes a random seed
for the student’s execution.
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Figure 4.6: Feedback for an R exercise where the goal is to generate a plot.
The code generates a plot showing a simple sine function, which is
reflected in the feedback.

have a parent, essentially creating a tree structure of environments. In
most cases, this tree will actually be a path, but in the R judge, the student
environment is explicitly attached to the base environment. This even
makes sure that libraries loaded by the judge are not initially available to
the student code (thus allowing teachers to test that students can correctly
load libraries). The judge itself runs in an anonymous environment, so
that even students with intimate knowledge of the inner workings of R
and the judge itself would not be able to find it.

The judge is also programmed very defensively. Every time execution
is handed off to student code (or even teacher code), appropriate error
handlers and output redirections are installed. This prevents the student
and teacher code from e.g. writing to standard output (and thus messing
up the JSON expected by Dodona).
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4.4 TESTed
TESTed39 is a universal judge for Dodona. TESTed was developed to
solve two major drawbacks with the current judge system of Dodona:

• When creating the same exercise in multiple programming languages,
the exercise description and test cases need to be redone for every
programming language. This is especially relevant for very simple
exercises that students almost always start with, and for exercises
in algorithms courses, where the programming language a student
solves an exercise in is of lesser importance than the way they solve
it. Mistakes in exercises also have to be fixed in all instances of the
exercise when there are multiple instances of the exercise.

• The judges themselves have to be created from scratch every time.
Most judges offer the same basic concepts and features, most of
which are independent of programming language (communication
with Dodona, checking correctness, I/O, …).

The goal of TESTed was to implement a judge so that programming
exercises only have to be created once to be available in all programming
languages TESTed supports. TESTed currently supports Bash, C, C#,
Haskell, Java, JavaScript, Kotlin, and Python. An exercise should also
not have to be changed when support for a new programming language is
added. Adding a new programming language itself should also be easier
than creating a new judge from scratch. As a secondary goal, we also
wanted to make it as easy as possible to create new exercises. Teachers
who have not used Dodona before should be able to create a new basic
exercise without too many issues.

TESTed was first developed as a proof of concept in my master’s thesis (Van
Petegem & Dawyndt, 2018), which presented a method for estimating
the time and memory complexity of solutions for programming exercises.
One of the goals was to make this method work over many programming
languages. To do this, we wrote a framework based on Jupyter kernels40

where the interaction with each programming language was abstracted
away behind a common interface. We realized this framework could be
useful in itself, but it was only developed as far as we needed for the thesis.
Further work then developed this proof of concept into the full judge we
will present in the following sections.

39https://github.com/dodona-edu/universal-judge
40https://jupyter.org
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We will expand on TESTed using an example exercise. In this exercise,
students need to rotate a list. For example, in Python, rotate([0, 1,
2, 3, 4], 2) should return the list [3, 4, 0, 1, 2]. The goal is that
teachers can write their exercises as in Listing 4.2.

1 - tab: "Feedback"
2 contexts:
3 - testcases:
4 - statement: "numbers01 = [0, 1, 2, 3, 4]"
5 - expression: "rotate(numbers01, 2)"
6 return: [3, 4, 0, 1, 2]
7 - expression: "rotate(numbers01, 1)"
8 return: [4, 0, 1, 2, 3]
9 - testcases:

10 - statement: "numbers02 = [0, 1, 2, 3, 4, 5]"
11 - expression: "rotate(numbers02, 2)"
12 return: [4, 5, 0, 1, 2, 3]
13 - expression: "rotate(numbers02, 1)"
14 return: [5, 0, 1, 2, 3, 4]

Listing 4.2: Example of a TESTed test plan, showing statements and expressions.
Statements and expressions are in a custom Python-like language.

4.4.1 Overview
TESTed generally works using the following steps:

1. Receive the submission, exercise test plan, and any auxiliary files
from Dodona.

2. Validate the test plan and making sure the submission’s programming
language is supported for the given exercise.

3. Generate test code for each context in the test plan.

4. Optionally compile the test code, either in batch mode or per con-
text. This step is skipped if evaluation a submission written in an
interpreted language.

5. Execute the test code.

6. Evaluate the results, either with programming language-specific
evaluation, programmed evaluation, or generic evaluation.
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7. Send the evaluation results to Dodona.

4.4.2 Test plan
One of the most important elements that is needed to perform these
steps is the test plan. This test plan is a hierarchical structure, which
closely resembles the underlying structure of Dodona’s feedback. There
are, however, a few important differences. The first of these is the context
testcase. This is a special testcase per context that executes the main
function (or the entire program in case this is more appropriate for the
language being executed). The only possible inputs for this testcase are
text for the standard input stream, command-line arguments and files in
the working directory. The exit status code can only be checked in this
testcase as well.

Like the communication with Dodona, this test plan is a JSON document
under the hood. In the following sections, we will use the JSON repres-
entation of the test plan to discuss how TESTed works. Exercise authors
use the DSL to write their tests, which we discuss in Section 4.4.9. This
DSL is internally converted by TESTed to the more extensive underlying
structure before execution. A test plan of the example exercise can be
seen in Listing 4.3.

4.4.3 Data serialization
As part of the test plan, we also need a way to generically describe values
and their types. This is what we will call the serialization format. The
serialization format should be able to represent all the basic data types we
want to support in the programming language independent part of the test
plan. These data types are basic primitives like integers, reals (floating
point numbers), booleans, and strings, but also more complex collection
types like arrays (or lists), sets and mapping types (maps, dictionaries,
and objects). Note that the serialization format is also used on the side of
the programming language, to receive (function) arguments and send back
execution results.

Of course, a number of data serialization formats already exist, like
MessagePack41, ProtoBuf42, … Binary formats were excluded from the
start, because they can not easily be embedded in our JSON test plan,
41https://msgpack.org/
42https://protobuf.dev/
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1 {
2 "tabs": [
3 {
4 "name": "Feedback",
5 "contexts": [
6 {
7 "testcases": [
8 {
9 "input": {

10 "type": "function",
11 "name": "rotate",
12 "arguments": [
13 ...
14 ]
15 },
16 "output": {
17 "result": {
18 "value": {
19 ...
20 }
21 }
22 }
23 },
24 ...
25 ]
26 }
27 ]
28 }
29 ]
30 }

Listing 4.3: Basic structure of a test plan. The structure of Dodona’s feedback
is followed closely. The function arguments have been left out, as
they are explained in Section 4.4.3.
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but more importantly, they can neither be written nor read by humans.
Other formats did not support all the types we wanted to support and
could not be extended to do so. Because of our goal in supporting many
programming languages, the format also had to be either widely imple-
mented or be easily implementable. None of the formats we investigated
met all these requirements. We opted to make the serialization format in
JSON as well. Values are represented by objects containing the encoded
value and the accompanying type. Note that this is a recursive format:
the values in a collection are also serialized according to this specification.

The types of values are split in three categories. The first category are
the basic types listed above. The second category are the advanced types.
These are specialized versions of the basic types, for example to specify the
number of bits that a number should be, or whether a collection should be
a tuple or a list. The final category of types can only be used to specify an
expected type. In addition to the other categories, any can be specified.
Like the name says, any signifies that the expected type is unknown, and
the student can therefore return any type.

The encoded expected return value of our example exercise can be seen in
Listing 4.4.

1 {
2 "type": "sequence",
3 "data": [
4 { "type": "integer", "data": 3 },
5 { "type": "integer", "data": 4 },
6 { "type": "integer", "data": 0 },
7 { "type": "integer", "data": 1 },
8 { "type": "integer", "data": 2 }
9 ]

10 }

Listing 4.4: A list encoded using TESTed’s data serialization format. The
corresponding Python list would be [3, 4, 0, 1, 2].

4.4.4 Statements
There is more complexity hidden in the idea of creating a variable of
a custom type. It implies that we need to be able to create variables,
instead of just capturing the result of function calls or other expressions.
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To support this, specific structures were added to the test plan JSON
schema. Listing 4.5 shows what it would look like if we wanted to assign
the function argument of our example exercise to a variable.

1 "testcases": [
2 {
3 "input": {
4 "type": "sequence",
5 "variable": "numbers01",
6 "expression": {
7 "type": "sequence",
8 "data": [
9 { "type": "integer", "data": 0 },

10 { "type": "integer", "data": 1 },
11 { "type": "integer", "data": 2 },
12 { "type": "integer", "data": 3 },
13 { "type": "integer", "data": 4 }
14 ],
15 }
16 }
17 }
18 ]

Listing 4.5: A TESTed testcase containing a statement. The corresponding
Python statement would be numbers01 = [0, 1, 2, 3, 4].

4.4.5 Checking programming language support
We also need to make sure that the programming language of the submission
under test is supported by the test plan of its exercise. The two things that
are checked are whether a programming language supports all the types
that are used and whether the language has all the necessary language
constructs. For example, if the test plan uses a tuple, but the language
does not support it, it’s obviously not possible to evaluate a submission
in that language. The same is true for overloaded functions: if it is
necessary that a function can be called with a string and with a number,
a language like C will not be able to support this. Collections also are not
yet supported for C, since the way arrays and their lengths work in C is
quite different from other languages. Our example exercise will not work
in C for this reason.
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4.4.6 Execution
To go from the generic test plan to something that can actually be executed
in the given language, we need to generate test code. This is done by way
of a templating system. For each programming language supported by
TESTed, a few templates need to be defined. The serialization format also
needs to be implemented in the given programming language. Because the
serialization format is based on JSON and JSON is a widely used format,
this requirement is usually pretty easy to fulfil.

For some languages, the code needs to be compiled as well. All test code
is usually compiled into one executable, since this only results in one call
to the compiler (which is usually a pretty slow process). There is one big
drawback to this way of compiling code: if there is a compilation error (for
example because a student has not yet implemented all requested functions)
the compilation will fail for all contexts. Because of this, TESTed will
fall back to separate compilations for each context if a compilation error
occurs. Subsequently, the test code is executed and its results collected.

4.4.7 Evaluation
The generated output is usually evaluated by TESTed itself. TESTed can
however only evaluate the output as far as it is programmed to do so. There
are two other ways the results can be evaluated: programmed evaluation
and programming-language specific evaluation. With programmed evalu-
ation, the results are passed to code written by a teacher. For efficiency’s
sake, this code has to be written in Python (which means TESTed does not
need to launch a new process for the evaluation). This code will then check
the results, and generate appropriate feedback. Programming-language
specific evaluation is executed immediately after the test code in the pro-
cess of the test code. This can be used to evaluate programming-language
specific concepts, for example the correct use of pointers in C.

4.4.8 Linting
Next to correctness, style is also an important aspect of source code. In a
lot of contexts, linters are used to perform basic style checks. Linting was
also implemented in TESTed. For each supported programming language,
both the linter to be used and how its output should be interpreted are
specified.
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4.4.9 DSL
As mentioned in Section 4.4.2, exercise authors are not expected to write
their test plans in JSON. It is very verbose and error-prone when writing
(trailing commas are not allowed, all object keys are strings and need to be
written as such, etc.). This aspect of usability was not the initial focus of
TESTed, since most Dodona power users already use code to generate their
test plans. Because code is very good at outputting an exact and verbose
format like JSON, this avoids its main drawback. However, we wanted
teachers in secondary education to be able to work with TESTed, and
they mostly do not have enough experience with programming themselves
to generate a test plan. To solve this problem we wanted to integrate a
domain-specific language (DSL) to describe TESTed test plans.

We first investigated whether we could use an existing format to do so.
The best option of these was PEML: the Programming Exercise Markup
Language (Mishra & Edwards, 2023). Envisioned as a universal format
for programming exercise descriptions, their goals seemed to align with
ours. Unfortunately, they did not base themselves on any existing formats.
This means that there is little tooling around PEML. Parsing it as part of
TESTed would require a lot of implementation work, and IDEs or other
editors do not do syntax highlighting for it. The format itself is also quite
error-prone when writing. Because of these reasons, we discarded PEML
and started working on our own DSL.

Our own DSL is based on YAML43. YAML is a superset of JSON and
describes itself as “a human-friendly data serialization language for all
programming languages”. The DSL structure is quite similar to the actual
test plan, though it does limit the amount of repetition required for
common operations. YAML’s concise nature also contributes to the read-
and writability of its test plans.

For the actual statements, expressions and values, we added an abstract
programming language, made to look somewhat like Python 3. Note
that this is not a full programming language, but only supports language
constructs as far as they are needed by TESTed. Values are interpreted as
basic types, but can be cast explicitly to one of the more advanced types.
The DSL version of the test plan for the example exercise can be seen in
Listing 4.2.

43https://yaml.org
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4.5 Conclusion
This chapter shows that building a platform like Dodona takes a lot of work.
No software is ever free of bugs, and we have to keep up with dependency
updates. Expanding into secondary education also meant catering to their
needs, by building a basic in-browser IDE. The infrastructure and tooling
required for supporting the assessment of many submissions in a lot of
different programming languages is also considerable.
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5 Pass/fail prediction in
programming courses

We now shift to the chapters where we make use of the data provided by
Dodona to perform educational data mining research.

This chapter is based on Van Petegem, C., Deconinck, L., Mourisse,
D., Maertens, R., Strijbol, N., Dhoedt, B., De Wever, B., Dawyndt, P.,
Mesuere, B., 2022. Pass/Fail Prediction in Programming Courses. Journal
of Educational Computing Research, 68–95. It also briefly discusses the
work reproduction of this research performed in Zhidkikh, D., Heilala, V.,
Van Petegem, C., Dawyndt, P., Järvinen, M., Viitanen, S., De Wever,
B., Mesuere, B., Lappalainen, V., Kettunen, L., & Hämäläinen, R., 2024.
Reproducing Predictive Learning Analytics in CS1: Toward Generalizable
and Explainable Models for Enhancing Student Retention. Journal of
Learning Analytics, 1-21.

The work presented in this chapter was part of the master thesis by Louise
Deconinck, with the reproduction being led by Denis Zhidkikh.

5.1 Introduction
A lot of educational opportunities are missed by keeping assessment sep-
arate from learning (Black & Wiliam, 1998; Wiliam, 2011). Educational
technology can bridge this divide by providing real-time data and feedback
to help students learn better, teachers teach better, and educational sys-
tems become more effective (OECD, 2021). Earlier research demonstrated
that the adoption of interactive platforms may lead to better learning
outcomes (Khalifa & Lam, 2002) and allows collecting rich data on student
behaviour throughout the learning process in non-evasive ways. Effectively
using such data to extract knowledge and further improve the underlying
processes, which is called educational data mining (Baker & Yacef, 2009),
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is increasingly explored as a way to enhance learning and educational
processes (Dutt et al., 2017).

About one third of the students enrolled in introductory programming
courses fail (Bennedsen & Caspersen, 2007; Watson & Li, 2014). Such
high failure rates are problematic in light of low enrolment numbers
and high industrial demand for software engineering and data science
profiles (Watson & Li, 2014). To remedy this situation, it is important
to have detection systems for monitoring at-risk students, understand
why they are failing, and develop preventive strategies. Ideally, detection
happens early on in the learning process to leave room for timely feedback
and interventions that can help students increase their chances of passing
a course.

Previous approaches for predicting performance on examinations either
take into account prior knowledge such as educational history and socio-
economic background of students or require extensive tracking of student
behaviour. Extensive behaviour tracking may directly impact the learning
process itself. Rountree et al. (2004) used decision trees to find that
the chance of failure strongly correlates with a combination of academic
background, mathematical background, age, year of study, and expectation
of a grade other than “A”. They conclude that students with a skewed
view on workload and content are more likely to fail. Kovacic (2012)
used data mining techniques and logistic regression on enrolment data to
conclude that ethnicity and curriculum are the most important factors for
predicting student success. They were able to predict success with 60%
accuracy. Asif et al. (2017) combine examination results from the last
two years in high school and the first two years in higher education to
predict student performance in the remaining two years of their academic
study program. They used data from one cohort to train models and from
another cohort to test that the accuracy of their predictions is about 80%.
This evaluates their models in a similar scenario in which they could be
applied in practice.

A downside of the previous studies is that collecting uniform and com-
plete data on student enrolment, educational history and socio-economic
background is impractical for use in educational practice. Data collection
is time-consuming and the data itself can be considered privacy-sensitive.
Usability of predictive models therefore not only depends on their accuracy,
but also on their dependency on findable, accessible, interoperable and
reusable data (Wilkinson et al., 2016). Predictions based on educational
history and socio-economic background also raise ethical concerns. Such
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background information definitely does not explain everything and lowers
the perceived fairness of predictions (Binns et al., 2018; Grgić-Hlača et al.,
2018). Students also can not change their background, so these items are
not actionable for any corrective intervention.

It might be more convenient and acceptable if predictive models are
restricted to data collected on student behaviour during the learning process
of a single course. An example of such an approach comes from Vihavainen
(2013), using snapshots of source code written by students to capture their
work attitude. Students are actively monitored while writing source code
and a snapshot is taken automatically each time they edit a document.
These snapshots undergo static and dynamic analysis to detect good
practices and code smells, which are fed as features to a non-parametric
Bayesian network classifier whose pass/fail predictions are 78% accurate by
the end of the semester. In a follow-up study they applied the same data
and classifier to accurately predict learning outcomes for the same student
cohort in another course (Vihavainen et al., 2013). In this case, their
predictions were 98.1% accurate, although the sample size was rather small.
While this procedure does not rely on external background information,
it has the drawback that data collection is more invasive and directly
intervenes with the learning process. Students can not work in their
preferred programming environment and have to agree with extensive
behaviour tracking.

Approaches that are not using machine learning also exist. Feldman et
al. (2019) try to answer the question “Am I on the right track?” on the
level of individual exercises, by checking if the student’s current progress
can be used as a base to synthesize a correct program. However, there
is no clear way to transform this type of approach into an estimation
of success on examinations. Werth (1986) found significant (p < 0.05)
correlations between students’ college grades, the number of hours worked,
the number of high school mathematics classes and the students’ grades
for an introductory programming course. Goold & Rimmer (2000) also
looked at learning style (surveyed using LSI2) as a factor in addition to
demographics, academic ability, problem-solving ability and indicators of
personal motivation. The regressions in their study account for 42 to 65
percent of the variation in cohort performances.

In this chapter, we present an alternative framework (Figure 5.1) to
predict if students will pass or fail a course within the same context of
learning to code. The method only relies on submission behaviour for
programming exercises to make accurate predictions and does not require
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any prior knowledge or intrusive behaviour tracking. Interpretability
of the resulting models was an important design goal to enable further
investigation on learning habits. We also focused on early detection of
at-risk students, because predictive models are only effective for the cohort
under investigation if remedial actions can be started long before students
take their final exam.

Figure 5.1: Step-by-step process of the proposed pass/fail prediction framework
for programming courses: 1) Collect metadata from student submis-
sions during successive course editions. 2) Align course editions by
identifying corresponding time points and calculating snapshots at
these time points. A snapshot measures student performance only
from metadata available in the course edition at the time the snap-
shot was taken. 3) Train a machine learning model on snapshot data
from previous course editions and predict which students will likely
pass or fail the current course edition by applying the model on a
snapshot of the current edition. 4) Infer what learning behaviour has
a positive or negative learning effect by interpreting feature weights
of the machine learning model. Teachers can use insights from both
steps 3 and 4 to take actions in their teaching practice.

The chapter starts with a description of how data is collected, what data
is used and which machine learning methods have been evaluated to make
pass/fail predictions. We evaluated the same models and features in mul-
tiple courses to test their robustness against differences in teaching styles
and student backgrounds. The results are discussed from a methodological
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and educational perspective with a focus on i) accuracy (What machine
learning algorithms yield the best predictions?), ii) early detection (Can we
already make accurate predictions early on in the semester?), and iii) inter-
pretability (Are resulting models clear about which features are important?
Can we explain why certain features are identified as important? How
self-evident are important features?).

5.2 Materials and methods
5.2.1 Course structures
This study uses data from two introductory programming courses, refer-
enced as course A and course B, collected during 3 editions of each course
in academic years 2016–2017, 2017–2018, and 2018–2019. Course A is the
course described in Section 3.2. Course B is the introductory programming
course taught at the Faculty of Engineering at Ghent University. Both
courses run once per academic year across a 12-week semester (September–
December). They have separate lecturers and teaching assistants, and
are taken by students of different faculties. The courses have their own
structure, but each edition of a course follows the same structure. Table 5.1
summarizes some statistics on the course editions included in this study.

year students # ex. solutions tries pass rate
A 2016–2017 322 60 167 675 9.56 60.86%
A 2017–2018 249 60 125 920 9.19 61.44%
A 2018–2019 307 60 176 535 10.29 65.14%
B 2016–2017 372 138 371 891 9.10 56.72%
B 2017–2018 393 187 407 696 7.31 60.81%
B 2018–2019 437 201 421 461 6.26 62.47%

Table 5.1: Statistics for course editions included in this study. The courses are
taken by different student cohorts at different faculties and differ in
structure, lecturers and teaching assistants. The number of tries is
the average number of solutions submitted by a student per exercise
they worked on (i.e. for which the student submitted at least one
solution in the course edition).

Course A is subdivided into two successive instructional units that each
cover five programming topics – one topic per week – followed by an
evaluation about all topics covered in the unit. Students must solve six
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programming exercises on each topic before a deadline one week later. Sub-
mitted solutions for these mandatory exercises are automatically evaluated
and considered correct if they pass all unit tests for the exercise. Failing
to submit a correct solution for a mandatory exercise has a small impact
on the score for the evaluation at the end of the unit. The final exam at
the end of the semester evaluates all topics covered in the entire course.
Students need to solve new programming exercises during evaluations (2
exercises) and exams (3 exercises), where reviewers manually evaluate and
grade submitted solutions based on correctness, programming style used,
choice made between the use of different programming techniques, and
the overall quality of the solution. Each edition of the course is taken by
about 300 students.

Course B has 20 lab sessions across the semester, with evaluations after the
10th and 17th lab session and a final exam at the end of the semester. Each
lab session comes with a set of exercises and has an indicative deadline
for submitting solutions. However, these exercises are not taken into
account when computing the final score for the course, so students are
completely free to work on exercises as a way to practice their coding skills.
Students need to solve new programming exercises during evaluations (3
exercises) and exams (4 exercises). Solutions submitted during evaluations
are automatically graded based on the number of passed unit tests for the
exercise. Solutions submitted during exams are manually graded in the
same way as for course A. Each edition of the course is taken by about
400 students.

We opted to use two different courses that are structured quite differently
to make sure our framework is generally applicable in other courses where
the same behavioural data can be collected.

5.2.2 Learning environment
Both courses use Dodona as their online learning environment (Van
Petegem et al., 2023). Dodona promotes active learning through problem-
solving (Prince, 2004). Each course edition has its own Dodona course,
with a learning path that groups exercises in separate series (Figure 5.2).
Course A has one series per covered programming topic (10 series in total)
and course B has one series per lab session (20 series in total). A submis-
sion deadline is set for each series. Dodona is also used to take tests and
exams, within series that are only accessible for participating students.
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Figure 5.2: Student view of a course in Dodona, showing two series of six exercises
in the learning path of course A. Each series has its own deadline.
The status column shows a global status for each exercise based on
the last solution submitted. The class progress column visualizes
global status for each exercise for all students subscribed in the
course. Icons on the left show a global status for each exercise based
on the last submission submitted before the series deadline.

91



5 Pass/fail prediction in programming courses

Throughout an edition of a course, students can continuously submit
solutions for programming exercises and immediately receive feedback
upon each submission, even during tests and exams. This rich feedback
is automatically generated by an online judge and unit tests linked to
each exercise (Wasik et al., 2018). Guided by that feedback, students can
track potential errors in their code, remedy them and submit an updated
solution. There is no restriction on the number of solutions that can be
submitted per exercise, and students can continue to submit solutions
after a series deadline. All submitted solutions are stored, but only the
last submission before the deadline is taken into account to determine the
status (and grade) of an exercise for a student. One of the effects of active
learning, triggered by exercises with deadlines and automated feedback,
is that most learning happens during the semester as can be seen on the
heatmap in Figure 5.3.

Figure 5.3: Heatmap showing the distribution per day of all 176 535 solutions
submitted during the 2018–2019 edition of course A. The darker the
colour, the more submissions were made on that day. A lighter red
means there are few submissions on that day. A light grey square
means that no submissions were made that day. Weekly lab sessions
for different groups were organized on Monday afternoon, Friday
morning and Friday afternoon. Weekly deadlines for mandatory
exercises were on Tuesdays at 22:00. There were four exam sessions
for different groups in January. There is little activity in the exam
periods, except for days on which there was an exam. The course
is not taught in the second semester, so there is very little activity
there. Two exam sessions were organized in August/September
granting an extra chance to students who failed on their exam in
January/February.

5.2.3 Submission data
We exported data from Dodona on all solutions submitted by students
during each course edition included in the study. Each solution has a
submission timestamp with precision down to the second and is linked
to a course edition, series in the learning path, exercise and student. We
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did not use the actual source code submitted by students, but did use the
status describing the global assessment made by the learning environment:
correct, wrong, compilation error, runtime error, time limit exceeded,
memory limit exceeded, or output limit exceeded.

Comparison of student behaviour between different editions of the same
course is enabled by computing snapshots for each edition at series dead-
lines. Because course editions follow the same structure, we can align their
series and compare snapshots for corresponding series. Corresponding
snapshots represent student performance at intermediate points during
the semester and their chronology also allows longitudinal analysis within
the semester. Course A has snapshots for the five series of the first unit
(labelled S1–S5), a snapshot for the evaluation of the first unit (labelled
E1), snapshots for the five series of the second unit (labelled S6–S10), a
snapshot for the evaluation of the second unit (labelled E2) and a snapshot
for the exam (labelled E3). Course B has snapshots for the first ten lab
sessions (labelled S1–S10), a snapshot for the first evaluation (labelled E1),
snapshots for the next series of seven lab sessions (labelled S11–S17), a
snapshot for the second evaluation (labelled E2), snapshots for the last
three lab sessions (S18–S20) and a snapshot for the exam (labelled E3).

It is important to stress that a snapshot of a course edition measures
student performance only using the information available at the time of the
snapshot. As a result, the snapshot does not take into account submissions
after its timestamp. The behaviour of a student can then be expressed as
a set of features extracted from the raw submission data. We identified
different types of features (see Appendix B) that indirectly quantify certain
behavioural aspects of students practising their programming skills. When
and how long do students work on their exercises? Can students correctly
solve an exercise and how much feedback do they need to accomplish this?
What kinds of mistakes do students make while solving programming
exercises? Do students further optimize the quality of their solution after
it passes all unit tests, based on automated feedback or publication of
sample solutions? Note that there is no one-on-one relationship between
these behavioural aspects and feature types. Some aspects will be covered
by multiple feature types, and some feature types incorporate multiple
behavioural aspects. We will therefore need to take into account possible
dependencies between feature types while making predictions.

A feature type essentially makes one observation per student per series.
Each feature type thus results in multiple features: one for each series
in the course (excluding series for evaluations and exams). In addition,
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the snapshot also contains a feature for the average of each feature type
across all series. We do not use observations per individual exercise, as
the actual exercises might differ between course editions. Snapshots taken
at the deadline of an evaluation or later, also contain the score a student
obtained for the evaluation. These features of the snapshot can be used to
predict whether a student will finally pass/fail the course. In addition, the
snapshot also contains a label indicating whether the student passed or
failed that is used during training and testing of classification algorithms.
Students that did not take part in the final examination, automatically
fail the course.

Since course B has no hard deadlines, we left out deadline-related features
from its snapshots (first_dl, last_dl and nr_dl; see Appendix B). To
investigate the impact of deadline-related features, we also made predictions
for course A that ignore these features.

5.2.4 Classification algorithms
We evaluated four classification algorithms to make pass/fail predictions
from student behaviour: stochastic gradient descent (Ferguson, 1982),
logistic regression (Kleinbaum, 1994), support vector machines (Cortes
& Vapnik, 1995), and random forests (Svetnik et al., 2003). We used
implementations of these algorithms from scikit-learn (Pedregosa et
al., 2011) and optimized model parameters for each algorithm by cross-
validated grid-search over a parameter grid.

Readers unfamiliar with machine learning can think of these specific
algorithms as black boxes, but we briefly explain the basic principles of
classification for their understanding. Supervised learning algorithms use
a dataset that contains both inputs and desired outputs to build a model
that can be used to predict the output associated with new inputs. The
dataset used to build the model is called the training set and consists of
training examples, with each example represented as an array of input
values (feature vector). Classification is a specific case of supervised
learning where the outputs are restricted to a limited set of values (labels),
in contrast to for example all possible numerical values with a range.
Classification algorithms are validated by splitting a dataset of labelled
feature vectors into a training set and a test set, building a model from
the training set, and evaluating the accuracy of its predictions on the
test set. Keeping training and test data separate is crucial to avoid bias
during validation. A standard method to make unbiased predictions for
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all examples in a dataset is k-fold cross-validation: partition the dataset
in k subsets and then perform k experiments that each take one subset for
evaluation and the other k − 1 subsets for training the model.

Pass/fail prediction is a binary classification problem with two possible
outputs: passing or failing a course. We evaluated the accuracy of the
predictions for each snapshot and each classification algorithm with three
different types of training sets. As we have data from three editions of
each course, the largest possible training set to make predictions for the
snapshot of a course edition combines the corresponding snapshots from
the two remaining course editions. We also made predictions for a snapshot
using each of its corresponding snapshots as individual training sets to
see if we can still make accurate predictions based on data from only one
other course edition. Finally, we also made predictions for a snapshot
using 5-fold cross-validation to compare the quality of predictions based
on data from the same or another cohort of students. Note that the latter
strategy is not applicable to make predictions in practice, because we will
not have pass/fail results as training labels while taking snapshots during
the semester. In practice, to make predictions for a snapshot, we can rely
only on corresponding snapshots from previous course editions. However,
because we can assume that different editions of the same course yield
independent data, we also used snapshots from future course editions in
our experiments.

There are many metrics that can be used to evaluate how accurately a
classifier predicted which students will pass or fail the course from the
data in a given snapshot. Predicting a student will pass the course is
called a positive prediction, and predicting they will fail the course is
called a negative prediction. Predictions that correspond with the actual
outcome are called true predictions, and predictions that differ from the
actual outcome are called false predictions. This results in four possible
combinations of predictions: true positives (TP ), true negatives (TN),
false positives (FP ) and false negatives (FN). Two standard accuracy
metrics used in information retrieval are precision (Equation 5.1) and recall
(Equation 5.2). The latter is also called sensitivity if used in combination
with specificity (Equation 5.3).

TP
TP + FP

(5.1)

TP
TP + FN

(5.2)
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TN
TN + FP

(5.3)

Many studies for pass/fail prediction use accuracy (Equation 5.4) as a
single performance metric. However, this can yield misleading results. For
example, let’s take a dummy classifier that always “predicts” students will
pass, no matter what. This is clearly a bad classifier, but it will nonetheless
have an accuracy of 75% for a course where 75% of the students pass.

TP + TN
TP + TN + FP + FN

(5.4)

In our study, we will therefore use two more complex metrics that take
these effects into account: balanced accuracy and F1-score. Balanced
accuracy is the average of sensitivity and specificity. The F1-score is the
harmonic mean of precision and recall. If we go back to our example, the
optimistic classifier that consistently predicts that all students will pass
the course and thus fails to identify any failing student will have a balanced
accuracy of 50% and an F1-score of 75%. Under the same circumstances,
a pessimistic classifier that consistently predicts that all students will fail
the course has a balanced accuracy of 50% and an F1-score of 0%.

5.2.5 Pass/fail predictions
In summary, Figure 5.1 outlines the entire flow of the proposed pass/fail
prediction framework. It starts by extracting metadata for all submissions
students made so far within a course (timestamp, status, student, exercise,
series) and collecting their marks on intermediate tests and final exams
(step 1). In practice, applying the framework on a student cohort in the
current course edition only requires submission metadata and pass/fail
outcomes from student cohorts in previous course editions. Successive
course editions are then aligned by identifying fixed time points throughout
the course where predictions are made, for example at submission deadlines,
intermediate tests or final exams (step 2). We conducted a longitudinal
study to evaluate the accuracy of pass/fail predictions at successive stages
of a course (step 3). This is done by extracting features from the raw
submission metadata of one or more course editions and training machine
learning models that can identify at-risk students during other course
editions. Our scripts that implement this framework are provided as
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supplementary material.44 Teachers can also interpret the behaviour of
students in their class by analysing the feature weights of the machine
learning models (step 4).

5.3 Results and discussion
We evaluated the performance of four classification algorithms for pass/fail
predictions in a longitudinal sequence of snapshots from course A and B:
stochastic gradient descent (Figure 5.4), logistic regression (Figure 5.5),
support vector machines (Figure 5.6), and random forests (Figure 5.7).
For each classifier, course and snapshot, we evaluated 12 predictions for
the following combinations of training and test sets: train on one edition
and test on another edition; train on two editions and test on the other
edition; train and test on one edition using 5-fold cross validation. In
addition, we made predictions for course A using both the full set of
features and a reduced feature set that ignores deadline-related features.
We discuss the results in terms of accuracy, potential for early detection,
and interpretability.

5.3.1 Accuracy
The overall conclusion from the longitudinal analysis is that indirectly
measuring how students practice their coding skills by solving programming
exercises (formative assessments) in combination with directly measuring
how they perform on intermediate evaluations (summative assessments),
allows us to predict with high accuracy if students will pass or fail a
programming course. The signals to make such predictions seem to be
present in the data, as we come to the same conclusions irrespective of the
course, classification algorithm, or performance metric evaluated in our
study. Overall, logistic regression was the best performing classifier for
both courses, but the difference compared to the other classifiers is small.

When we compare the longitudinal trends of balanced accuracy for the
predictions of both courses, we see that course A starts with a lower
balanced accuracy at the first snapshot, but its accuracy increases faster
and is slightly higher at the end of the semester. At the start of the semester
at snapshot S1, course A has an average balanced accuracy between 60%
and 65% and course B around 70%. Nearly halfway through the semester,
44https://github.com/dodona-edu/pass-fail-article
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Figure 5.4: Performance of stochastic gradient descent classifiers for pass/fail
predictions in a longitudinal sequence of snapshots from courses
A (all features and reduced set of features) and B, measured by
balanced accuracy and F1-score. Dots represent performance of a
single prediction, with 12 predictions for each group of corresponding
snapshots (columns). Solid line connects averages of the performances
for each group of corresponding snapshots.
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Figure 5.5: Performance of logistic regression classifiers for pass/fail predictions
in a longitudinal sequence of snapshots from courses A (all features
and reduced set of features) and B, measured by balanced accuracy
and F1-score. Dots represent performance of a single prediction, with
12 predictions for each group of corresponding snapshots (columns).
Solid line connects averages of the performances for each group of
corresponding snapshots.
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Figure 5.6: Performance of support vector machine classifiers for pass/fail pre-
dictions in a longitudinal sequence of snapshots from courses A (all
features and reduced set of features) and B, measured by balanced
accuracy and F1-score. Dots represent performance of a single predic-
tion, with 12 predictions for each group of corresponding snapshots
(columns). Solid line connects averages of the performances for each
group of corresponding snapshots.
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Figure 5.7: Performance of random forest classifiers for pass/fail predictions in a
longitudinal sequence of snapshots from courses A (all features and
reduced set of features) and B, measured by balanced accuracy and
F1-score. Dots represent performance of a single prediction, with
12 predictions for each group of corresponding snapshots (columns).
Solid line connects averages of the performances for each group of
corresponding snapshots.
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before the first evaluation, we see an average balanced accuracy around
70% for course A at snapshot S5 and between 70% and 75% for course
B at snapshot S8. After the first evaluation, we can make predictions
with a balanced accuracy between 75% and 80% for both courses. The
predictions for course B stay within this range for the rest of the semester,
but for course A we can consistently make predictions with an average
balanced accuracy of 80% near the end of the semester.

Compared to the accuracy results of Kovacic (2012), we see a 15-20%
increase for our balanced accuracy results. Our balanced accuracy results
are similar to the accuracy results of Livieris et al. (2019), who used
semi-supervised machine learning. Asif et al. (2017) achieve an accuracy
of about 80% when using one cohort of training and another cohort for
testing, which is again similar to our balanced accuracy results. All of these
studies used prior academic history as the basis for their methods, which
we do not use in our framework. We also see similar results as compared
to Vihavainen (2013) where we do not have to rely on data collection that
interferes with the learning process. Note that we are comparing the basic
accuracy results of prior studies with the more reliable balanced accuracy
results of our framework.

F1-scores follow the same trend as balanced accuracy, but the inclination
is even more pronounced because it starts lower and ends higher. It shows
another sharp improvement of predictive performance for both courses
when students practice their programming skills in preparation of the final
exam (snapshot E3). This underscores the need to keep organizing final
summative assessments as catalysts of learning, even for courses with a
strong focus on active learning.

The variation in predictive accuracy for a group of corresponding snapshots
is higher for course A than for course B. This might be explained by the
fact that successive editions of course B use the same set of exercises,
supplemented with evaluation and exam exercises from the previous edition,
whereas each edition of course A uses a different selection of exercises.

Predictions made with training sets from the same student cohort (5-
fold cross-validation) perform better than those with training sets from
different cohorts (see supplementary material for details45). This is more
pronounced for F1-scores than for balanced accuracy, but the differences
are small enough so that nothing prevents us from building classification
models with historical data from previous student cohorts to make pass/fail

45https://github.com/dodona-edu/pass-fail-article
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predictions for the current cohort, which is something that can not be
done in practice with data from the same cohort as pass/fail information
is needed during the training phase. In addition, we found no significant
performance differences for classification models using data from a single
course edition or combining data from two course editions. Given that
cohort sizes are large enough, this tells us that accurate predictions can
already be made in practice with historical data from a single course edition.
This is also relevant when the structure of a course changes, because we
can only make predictions from historical data for course editions whose
snapshots align.

The need to align snapshots is also the reason why we had to build separate
models for courses A and B since both have differences in course structure.
The models, however, were built using the same set of feature types.
Because course B does not work with hard deadlines, deadline-related
feature types could not be computed for its snapshots. This missing
data and associated features had no impact on the performance of the
predictions. Deliberately dropping the same feature types for course A also
had no significant effect on the performance of predictions, illustrating that
the training phase is where classification algorithms decide themselves how
the individual features will contribute to the predictions. This frees us from
having to determine the importance of features beforehand, allows us to
add new features that might contribute to predictions even if they correlate
with other features, and makes it possible to investigate afterwards how
important individual features are for a given classifier (see Section 5.3.3).

Even though the structure of the courses is quite different, our method
achieves high accuracy results for both courses. The results for course
A with reduced features also still gives accurate results. This indicates
that the method should be generalizable to other courses where similar
data can be collected, even if the structure is quite different or when some
features are impossible to calculate due to the course structure.

5.3.2 Early detection
Accuracy of predictions systematically increases as we capture more of
student behaviour during the semester. But surprisingly we can already
make quite accurate predictions early on in the semester, long before
students take their first evaluation. Because of the steady trend, predictions
for course B at the start of the semester are already reliable enough to
serve as input for student feedback or teacher interventions. It takes some
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more time to identify at-risk students for course A, but from week four
or five onwards the predictions may also become an instrument to design
remedial actions for this course. Hard deadlines and graded exercises are a
strong enforcement of active learning behaviour on the students of course
A, and might disguise somewhat more the motivation of students to work
on their programming skills. This might explain why it takes a bit longer
to properly measure student motivation for course A than for course B.

5.3.3 Interpretability
So far, we have considered classification models as black boxes in our
longitudinal analysis of pass/fail predictions. However, many machine
learning techniques can tell us something about the contribution of in-
dividual features to make the predictions. In the case of our pass/fail
predictions, looking at the importance of feature types and linking them to
aspects of practising programming skills, might give us insights into what
kind of behaviour promotes or inhibits learning, or has no or a minor effect
on the learning process. Temporal information can tell us what behaviour
makes a steady contribution to learning or where we see shifts throughout
the semester.

This interpretability was a considerable factor in our choice of the clas-
sification algorithms we investigated in this study. Since we identified
logistic regression as the best-performing classifier, we will have a closer
look at feature contributions in its models. These models are explained by
the feature weights in the logistic regression equation, so we will express
the importance of a feature as its actual weight in the model. We use a
temperature scale when plotting importances: white for zero importance, a
red gradient for positive importance values and a blue gradient for negative
importance values. A feature importance w can be interpreted as follows
for logistic regression models: an increase of the feature value by one
standard deviation increases the odds of passing the course by a factor of
ew when all other feature values remain the same (Molnar, 2019). The
absolute value of the importance determines the impact the feature has on
predictions. Features with zero importance have no impact because e0 = 1.
Features represented with a light colour have a weak impact and features
represented with a dark colour have a strong impact. As a reference, an im-
portance of 0.7 doubles the odds for passing the course with each standard
deviation increase of the feature value, because e0.7 ∼ 2. The sign of the
importance determines whether the feature promotes or inhibits the odds
of passing the course. Features with a positive importance (red colour)
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will increase the odds with increasing feature values, and features with a
negative importance (blue colour) will decrease the odds with increasing
feature values.

To simulate that we want to make predictions for each course edition
included in this study, we trained logistic regression models with data from
the remaining two editions of the same course. A label “edition 18–19”
therefore means that we want to make predictions for the 2018–2019
edition of a course with a model built from the 2016–2017 and 2017–2018
editions of the course. However, in this case we are not interested in the
predictions themselves, but in the importance of the features in the models.
The importance of all features for each course edition can be found in the
supplementary material.46 We will restrict our discussion by highlighting
the importance of a selection of feature types for the two courses.

For course A, we look into the evaluation scores (Figure 5.8) and the
feature types correct_after_15m (Figure 5.9) and wrong (Figure 5.10).
Evaluation scores have a very strong impact on predictions, and high
evaluation scores increase the odds of passing the course. This comes as
no surprise, as both the evaluations and exams are summative assessments
that are organized and graded in the same way. Although the difficulty
of evaluation exercises is lower than those of exam exercises, evaluation
scores already are good predictors for exam scores. Also note that these
features only show up in snapshots taken at or after the corresponding
evaluation. They have zero impact on predictions for earlier snapshots, as
the information is not available at the time these snapshots are taken.

The second feature type we want to highlight is correct_after_15m: the
number of exercises in a series where the first correct submission was made
within fifteen minutes after the first submission (Figure 5.9). Note that
we can not directly measure how long students work on an exercise, as
they may write, run and test their solutions on their local machine before
their first submission to Dodona. Rather, this feature type measures how
long it takes students to find and remedy errors in their code (debugging),
after they start getting automatic feedback from Dodona.

For exercise series in the first unit of course A (series 1–5), we generally see
that the features have a positive impact (red). This means that students
will more likely pass the course if they are able to quickly remedy errors
in their solutions for these exercises. The first and fourth series are an
exception here. The fact that students need more time for the first series
46https://github.com/dodona-edu/pass-fail-article
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Figure 5.8: Importance of evaluation scores in the logistic regression models for
course A (full feature set). Reds mean that a growth in the feature
value for a student increases the odds of passing the course for that
student. The darker the colour the larger this increase will be.

might reflect that learning something new is hard at the beginning, even
if the exercises are still relatively easy. Series 4 of course A covers strings
as the first compound data type of Python in combination with nested
loops, where (non-nested) loops themselves are covered in series 3. This
complex combination might mean that students generally need more time
to debug the exercises in series 4.

For the series of the second unit (series 6–10), we observe two different
effects. The impact of these features is zero for the first few snapshots
(grey bottom left corner). This is because the exercises from these series
were not yet published at the time of those snapshots, where all series of
the first unit were available from the start of the semester. For the later
snapshots, we generally see a negative (blue) weight associated with the
features. It might seem counterintuitive and contradicts the explanation
given for the series of the first unit. However, the exercises of the second
unit are a lot more complex than those of the first unit. This up to a
point that even for good students it is hard to debug and correctly solve
an exercise in only 15 minutes. Students that need less than 15 minutes
at this stage might be bypassing learning by copying solutions from fellow
students instead of solving the exercises themselves. An exception to this
pattern are the few red squares forming a diagonal in the middle of the
bottom half. These squares correspond with exercises that are solved as
soon as they become available as opposed to waiting for the deadline. A
possible explanation for these few slightly positive weights is that these
exercises are solved by highly-motivated, top students.
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Figure 5.9: Importance of feature type correct_after_15m (the number of exer-
cises in a series where the first correct submission was made within
fifteen minutes after the first submission) in logistic regression mod-
els for course A (full feature set). Reds mean that a growth in the
feature value for a student increases the odds of passing the course
for that student. The darker the colour the larger this increase will
be. Blues mean that a growth in the feature value decreases the
odds. The darker the colour the larger this decrease will be.
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Finally, if we look at the feature type wrong (Figure 5.10), submitting a lot
of submissions with logical errors mostly has a positive impact on the odds
of passing the course. This underscores the old adage that practice makes
perfect, as real learning happens where students learn from their mistakes.
Exceptions to this rule are found for series 2, 3, 9 and 10. The lecturer and
teaching assistants identify the topics covered in series 2 and 9 by far as the
easiest topics covered in the course, and identify the topics covered in series
3, 6 and 10 as the hardest. However, it does not feel very intuitive that
being stuck with logical errors longer than other students either inhibits
the odds for passing on topics that are extremely hard or easy or promotes
the odds on topics with moderate difficulty. This shows that interpreting
the importance of feature types is not always straightforward.

Figure 5.10: Importance of feature type wrong (the number of wrong submissions
in a series) in logistic regression models for course A (full feature
set). Reds mean that a growth in the feature value for a student
increases the odds of passing the course for that student. The
darker the colour the larger this increase will be. Blues mean that
a growth in the feature value decreases the odds. The darker the
colour the larger this decrease will be.

For course B, we look into the evaluation scores (Figure 5.11) and the
feature types comp_error (Figure 5.12) and wrong (Figure 5.13). The
importance of evaluation scores is similar as for course A, although their
relative impact on the predictions is slightly lower. The latter might be
caused by automatic grading of evaluation exercises, where exam exercises
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are graded by hand. The fact that the second evaluation is scheduled a
little bit earlier in the semester than for course A, makes that pass/fail
predictions for course B can also rely earlier on this important feature.
However, we do not see a similar increase of the global performance metrics
around the second evaluation of course B, as we see for the first evaluation.

Figure 5.11: Importance of evaluation scores in the logistic regression models
for course B. Reds mean that a growth in the feature value for a
student increases the odds of passing the course for that student.
The darker the colour the larger this increase will be.

Learning to code requires mastering two major competences: i) getting
familiar with the syntax rules of a programming language to express the
steps for solving a problem in a formal way, so that the algorithm can be
executed by a computer, and ii) problem-solving itself. As a result, we
can make a distinction between different kinds of errors in source code.
Compilation errors are mistakes against the syntax of the programming
language, whereas logical errors result from solving a problem with a
wrong algorithm. When comparing the importance of the number of
compilation (Figure 5.12) and logical errors (Figure 5.13) students make
while practising their coding skills, we see a clear difference. Making a
lot of compilation errors has a negative impact on the odds for passing
the course (blue colour dominates in Figure 5.12), whereas making a lot
of logical errors makes a positive contribution (red colour dominates in
Figure 5.13). This aligns with the claim of Edwards et al. (2018) that
problem-solving is a higher-order learning task in the Taxonomy by Bloom
et al. (1956) (analysis and synthesis) than language syntax (knowledge,
comprehension, and application). Students that get stuck longer in the
mechanics of a programming language will more likely fail the course,
whereas students that make a lot of logical errors and properly learn from
them will more likely pass the course. So making mistakes is beneficial for
learning, but it depends on what kind of mistakes. We also looked at the
number of solutions with logical errors while interpreting feature types for
course A. Although we hinted there towards the same conclusions as for
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course B, the signals were less consistent. This shows that interpreting
feature importances always needs to take the educational context into
account. This can also be seen in Figure 5.9, where some weeks contribute
positively and some negatively. The reasons for these differences depend on
the content of the course, which requires knowledge of the course contents
to interpret correctly.

Figure 5.12: Importance of feature type comp_error (the number of submissions
with compilation errors in a series) in logistic regression models
for course B. Reds mean that a growth in the feature value for a
student increases the odds of passing the course for that student.
The darker the colour the larger this increase will be. Blues mean
that a growth in the feature value decreases the odds. The darker
the colour the larger this decrease will be.

5.4 Replication study at Jyväskylä University in
Finland

After our original study, we collaborated with researchers from Jyväskylä
University (JYU) in Finland on replicating the study in their introductory
programming course (Zhidkikh et al., 2024). There are however, some
notable differences to the study performed at Ghent University. In the
new study, self-reported data was added to the model to test whether this
enhances its predictions. Also, the focus shifted from pass/fail prediction to
dropout prediction. This happened because of the different way the course
at JYU is taught. By performing well enough in all weekly exercises and a
project, students can already receive a passing grade. This is impossible in
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Figure 5.13: Importance of feature type wrong (the number of wrong submissions
in a series) in logistic regression models for course B. Reds mean
that a growth in the feature value for a student increases the odds
of passing the course for that student. The darker the colour the
larger this increase will be. Blues mean that a growth in the feature
value decreases the odds. The darker the colour the larger this
decrease will be.

the courses at Ghent University, where most of the final marks are earned
at the exam at the end of the semester.

Another important difference in the two studies is the data that was
available to feed into the machine learning model. Dodona keeps rich
data about the evaluation results of a student’s submission. In TIM (the
learning environment used at JYU), only a score is kept for each submis-
sion. This score represents the underlying evaluation results (compilation
error/mistakes in the output/…). While it is possible to reverse engineer
the score into some underlying status, for some statuses that Dodona can
make a distinction between this is not possible with TIM. This means that
a different set of features had to be used in the study at JYU than the
feature set used in the study at Ghent University. The specific feature
types left out of the study at JYU are comp_error and runtime_error.

The course at JYU had been taught in the same way since 2015, resulting
in behavioural and survey data from 2 615 students from the 2015–2021
academic years. The snapshots were made weekly as well, since the course
also works with weekly assignments and deadlines. The self-reported data
consists of pre-course and midterm surveys that inquire about aptitudes
towards learning programming and motivation, including expectation
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about grades, prior programming experience, study year, attendance and
number of concurrent courses.

In the analysis, the same four classifiers as the original study were tested.
In addition to this, the dropout analysis was done for three datasets:
i) behavioural data only, ii) self-reported data only, and iii) combined
behavioural and self-reported data.

The results obtained in the study at JYU are very similar to the results
obtained at Ghent University. Again, logistic regression was found to yield
the best and most stable results. Even though no data about midterm
evaluations or examinations was used (since this data was not available)
a similar jump in accuracy around the midterm of the course was also
observed. The jump in accuracy can be explained here by the fact that
the period around the middle of the term is when most students drop out.
It was also observed that the first weeks of the course play an important
role in reducing dropout.

The addition of the self-reported data to the snapshots resulted in a
statistically significant improvement of predictions in the first four weeks of
the course. For the remaining weeks, the change in prediction performance
was not statistically significant. This again points to the conclusion that
the first few weeks of a CS1 course play a significant role in student success.
The models trained only on self-reported data performed significantly
worse than the other models.

The replication done at JYU showed that our prediction strategy can be
used in significantly different educational contexts. Of course, adaptations
to the method have to be made sometimes given differences in course
structure and learning environment used, but these adaptations do not
result in different prediction results.

5.5 Conclusions and future work
In this chapter, we presented a classification framework for predicting if
students will likely pass or fail introductory programming courses. The
framework already yields high-accuracy predictions early on in the semester
and is privacy-friendly because it only works with metadata from program-
ming challenges solved by students while working on their programming
skills. Being able to identify at-risk students early on in the semester
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opens windows for remedial actions to improve the overall success rate of
students.

We validated the framework by building separate classifiers for three
courses because of differences in course structure, institute and learning
platform, but using similar sets of features for training models. The
results showed that submission metadata from previous student cohorts
can be used to make predictions about the current cohort of students,
even if course editions use different sets of exercises, or the courses are
structured differently. Making predictions requires aligning snapshots
between successive editions of a course, where students have the same
expected progress at corresponding snapshots. Historical metadata from
a single course edition suffices if group sizes are large enough. Different
classification algorithms can be plugged into the framework, but logistic
regression resulted in the best-performing classifiers.

Apart from their application to make pass/fail predictions, an interesting
side effect of classification models that map indirect measurements of
learning behaviour onto mastery of programming skills is that they allow
us to interpret what behavioural aspects contribute to learning to code.
Visualization of feature importance turned out to be a useful instrument
for linking individual feature types with student behaviour that promotes
or inhibits learning. We applied this interpretability to some important
feature types that popped up for the three courses included in this study.

Our study has several strengths and promising implications for future
practice and research. First, we were able to predict success based on
historical metadata from earlier cohorts, and we are already able to do
that early on in the semester. In addition to that, the accuracy of our
predictions is similar to those of earlier efforts (Asif et al., 2017; Kovacic,
2012; Vihavainen, 2013) while we are not using prior academic history or
interfering with the students’ usual learning workflows. However, there are
also some limitations and work for the future. While our visualizations of
the features (Figures 5.8 through 5.13) are helpful to indicate which features
are important at which stage of the course in view of increasing versus
decreasing the odds of passing the course, they may not be oversimplified
and need to be carefully interpreted and placed into context. This is where
the expertise and experience of teachers comes in. These visualizations can
be interpreted by teachers and further contextualized towards the specific
course objectives. For example, teachers know the content and goals of
every series of exercises, and they can use the information presented in
our visualizations in order to investigate why certain series of exercises are
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more or less important in view of passing the course. In addition, they
may use the information to further redesign their course.

We can thus conclude that the proposed framework achieves the objectives
set for accuracy, early prediction and interpretability. Having this new
framework at hand immediately raises some follow-up research questions
that urge for further exploration: i) Do we inform students about their
odds of passing a course? How and when do we inform students about
their performance in an educationally responsible way? What learning
analytics do we use to present predictions to students, and do we only
show results or also explain how the data led to the results? How do
students react to the announcement of their chance at passing the course?
How do we ensure that students are not demotivated? ii) What actions
could teachers take upon early insights which students will likely fail the
course? What recommendations could they make to increase the odds
that more students will pass the course? How could interpretations of
important behavioural features be translated into learning analytics that
give teachers more insight into how students learn to code? iii) Can we
combine student progress (what programming skills does a student already
have and at what level of mastery), student preferences (which skills does
a student want to improve on), and intrinsic properties of programming
exercises (what skills are needed to solve an exercise and how difficult is
it) into dynamic learning paths that recommend exercises to optimize the
learning effect for individual students?
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This chapter discusses the history of manual feedback in the programming
course taught at the Faculty of Sciences at Ghent University (as described
in the case study in Section 3.2) and how it influenced the development
of evaluation and grading features within Dodona. We will then expand
on some further experiments using data mining techniques we did to try
to further reduce the time spent adding manual feedback. Section 6.5 is
based on an article that is currently being prepared for submission.

Comments and evaluations were added to Dodona by myself. Niko Strijbol
implemented the addition of grades to evaluations. Jorg Van Renterghem
finalized the addition of feedback reuse. The work on feedback prediction
was started by myself and further developed in collaboration with Kasper
Demeyere during his master’s thesis.

6.1 Phase 0: Paper-based assessment
Since the academic year 2015–2016 the programming course has started
taking two open-book/open-internet evaluations in addition to the regular
exam.47 The first is a midterm and the other happens at the end of
the semester (but before the exam period). The organization of these
evaluations has been a learning process for everyone involved. Although
the basic idea has remained the same (solve two Python programming
exercises in two hours, or three in 3.5 hours for the exam), almost every
aspect surrounding this basic premise has changed.

To be able to give feedback, student solutions were initially printed at the
end of the evaluation. At first this happened by giving each student a USB
stick on which they could find some initial files and which they had to
copy their solution to. Later, this was replaced by a submission platform
47Before this, sessions were organized where students had to explain the code they

submitted for an exercise. This was found not to be a great system, since it’s far
easier to explain code than to write it.
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developed at Ghent University (Indianio) that had support for printing
in the evaluation rooms. Indianio and its printing support was developed
specifically to support courses in this format. Students were then allowed
to check their printed solutions to make sure that the correct code was
graded. This however means that the end of an evaluation takes a lot
of time, since printing all these papers is a slow and badly parallelizable
process (not the mention the environmental impact!).48

It also has some important drawbacks while grading. SPOJ (and later
Dodona) was used to generate automated feedback on correctness. This
automated feedback was not available when assessing a student’s source
code on paper. It therefore takes either more mental energy to work out
whether the student’s code would behave correctly with all inputs or it
takes some hassle to look up a student’s automated assessment results
every time. Another important drawback is that students have a much
harder time seeing their feedback. While their numerical grades were
posted online or emailed to them, to see the comments graders wrote
alongside their code they had to come to a hands-on session and ask the
assistant there to be able to view the annotated version of their code
(which could sometimes be hard to read, depending on the handwriting
of the grader).49 Very few students did so. There are a few possible
explanations for this. They might experience social barriers for asking
feedback on an evaluation they performed poorly on. For students who
performed well, it might not be worth the hassle of going to ask about
feedback. But maybe more importantly, a vicious cycle started to appear:
because few students look at their feedback, graders did not spend much
effort in writing out clear and useful feedback. Code that was too complex
or plain wrong usually received little more than a strikethrough, instead
of an explanation on why the student’s method did not work.

6.2 Phase 1: Adding comments via Dodona
Seeing the amount of hassle that assessing these evaluations brought with
them, we decided to build support for manual feedback and grading into
Dodona. The first step of this was the functionality of adding comments

48The assignments themselves were also printed out and given to all students, which
increased the amount of paper even more.

49For the second evaluation, the feedback was also scanned and emailed, since there
were no more hands-on sessions. This was even the basis for a Dodona exercise:
https://dodona.be/en/activities/235452497/.
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to code. This work was started in the academic year 2019–2020, so the
onset of the COVID-19 pandemic brought a lot of momentum to this work.
Suddenly, the idea of printing student submissions became impossible,
since the evaluations had to be taken remotely by students and the graders
were working from home as well. Graders could now add comments to
a student’s code, which would allow the student to view the feedback
remotely as well. An example of such a comment can be seen on Figure 6.1.
There were still a few drawbacks to this system for assessing and grading
though:

• Knowing which submissions to grade was not always trivial. For most
students, the existing deadline system worked, since the solution
they submitted right before the deadline was the submission taken
into account when grading. There are however also students who
receive extra time based on a special status granted to them by
Ghent University (due to e.g. a learning disability). For these
students, graders had to manually search for the submission made
right before the extended deadline these students receive. This means
that students could not be graded anonymously. It also makes the
process a lot more error-prone.

• Comment visibility could not yet be time-gated towards students.
This meant that graders had to write their comments in a local
file with some extra metadata about the assessment. Afterwards
this local file could be processed using some home-grown scripts to
automatically add all comments at (nearly) the same time.

• Grades were added in external files, which was quite error-prone, since
this involves manually looking up the correct student and entering
their scores in a global spreadsheet. It is also less transparent towards
students. While rubrics were made for every exercise that had to
be graded, every grader had their preferred way of aggregating and
entering these scores. This means that even though the rubrics exist,
students had no option of seeing the different marks they received
for different rubrics.

This was obviously not a great user experience, and not something we
could recommend to anyone using Dodona who was not part of the Dodona
development team.

We could already do some anecdotal analysis of this new system. One
first observation that might seem counterintuitive is that graders did not
feel like they spent less time grading. If anything, they reported spending
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Figure 6.1: The first comment ever left on Dodona as part of a grading session.

more time grading. Another observation however is that graders gave more
feedback and felt that the feedback they gave was of higher quality than
before. In the first trial of this system, the feedback was viewed by over
80% of students within 24 hours, which is something that we had never
observed when grading on paper.

6.3 Phase 2: Evaluations
To streamline and automate the process of grading even more, the concept
of an evaluation was added to Dodona.50 Evaluations address two of the
drawbacks identified above:

• Comments made within an evaluation are linked to this evaluation.
They are only made visible to students once the feedback of the
evaluation is released.

• Evaluations also add an overview of the submissions that need to
receive feedback. Since the submissions are explicitly linked to the
evaluation, changing the submissions for students who receive extra
time is also a lot less error-prone, since it can be done before actually
starting out with the assessment. Evaluations also have specific UI
to do this, where the timestamps are shown to teachers as accurately
as Dodona saves them.

50See https://docs.dodona.be/en/guides/teachers/grading/ for the actual process
of creating an evaluation.
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The addition of evaluations resulted in a subjective feeling of time being
saved by the graders, at least in comparison with the previous system of
adding comments.

To address the third concern mentioned above, another feature was imple-
mented in Dodona. We added rubrics and a user-friendly way of entering
scores. This means that students can view the scores they received for each
rubric, and can do so right next to the feedback that was added manually.

6.4 Phase 3: Feedback reuse

Grading and giving feedback has always been a time-consuming process,
and the move to digital grading did not improve this compared to grading
on paper. Even though the process itself was optimized, this optimization
was used by graders to write out more and more comprehensive feedback.

Since evaluations are done with a few exercises solved by lots of students,
there are usually a lot of mistakes that are common to a lot of students.
This leads to graders giving the same feedback a lot of times. In fact,
most graders maintained a list of commonly given feedback in a separate
program or document.

We implemented the concept of feedback reuse to streamline giving com-
monly reused feedback. When giving feedback, the grader has the option
to save the annotation they are currently writing. When they later en-
counter a situation where they want to give that same feedback, the only
thing they have to do is write a few letters of the annotation in the saved
annotation search box, and they can quickly insert the text written earlier.
An example of this can be seen in Figure 6.2.

While originally conceptualized mainly for the benefit of graders, students
can actually benefit from this feature as well. Graders only need to write
out a detailed and clear message once and can then reuse that message
over a lot of submissions instead of writing a shorter message each time.
Because feedback is also added to a specific section of code, graders
naturally write atomic feedback that is easier to reuse than monolothic
sections of feedback (Moons et al., 2022).
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Figure 6.2: An example of searching for a previously saved annotation.

6.5 Phase 4: Feedback prediction
Given that we now have a system for reusing earlier feedback, we can ask
ourselves if we can do this in a smarter way. Instead of teachers having
to search for the annotation they want to use, what if we could predict
which annotation they want to use? This is exactly what we will explore
in this section.

6.5.1 Introduction
Feedback is a key factor in student learning (Black & Wiliam, 1998; Hattie
& Timperley, 2007). In programming education, many steps have been
taken to give feedback using automated assessment systems (Ala-Mutka,
2005; Ihantola et al., 2010; Paiva, Leal, et al., 2022). These automated
assessment systems give feedback on correctness, and can give some feed-
back on style and best practices through the use of linters. However, they
are generally unable to give the same high-level feedback on program
design that an experienced programmer can give. In many educational
practices, automated assessment is therefore supplemented with manual
feedback, especially when grading evaluations or exams (Debuse et al.,
2008). This requires a significant time investment of teachers (Tuck, 2012).
Reducing the time spent on giving feedback also benefits students since it
generally means they will receive more timely feedback, which has long
been considered important (Poulos & Mahony, 2008).

As a result, many researchers have explored the use of AI to enhance
giving feedback. Vittorini et al. (2021) used natural language processing
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to automate grading, and found that students who used the system during
the semester were more likely to pass the course at the end of the semester.
Lee (2023) has used supervised learning with ensemble learning to enable
students to perform peer and self-assessment. In addition, Bernius et
al. (2022) introduced a framework based on clustering text segments in
free-form textual exercises to reduce the grading workload. Strickroth &
Holzinger (2023) attempt to solve this problem specifically for programming
exercises by clustering submissions based on failed tests cases and compiler
error messages.

The context of our work is the Dodona learning environment, developed
at Ghent University (Van Petegem et al., 2023). Dodona gives automated
feedback on each submitted solution to programming exercises, but also
has a module that allows teachers to give manual feedback on student
submissions and assign scores. The process of giving manual feedback on
a submission to a programming exercise in Dodona is very similar to a
code review, where errors or suggestions for improvements are annotated
on the relevant line(s) (Figure 6.3). In 2023 alone, 3 663 749 solutions were
submitted to Dodona, of which 44 012 were manually assessed. During
manual assessment, 22 888 annotations were added to specific lines of code.

However, there is a crucial difference between traditional code reviews
and those in an educational context: teachers often give feedback on
numerous submissions to the same exercise. Since students often make
similar mistakes in their submissions to an exercise, it logically follows
that teachers will repeatedly give the same or similar feedback on multiple
student submissions. To facilitate the reuse of feedback, Dodona allows
teachers to save specific annotations for later search and retrieval. In 2023,
777 annotations were saved by teachers on Dodona, which were reused a
total of 7 180 times. The usage of this functionality has generated data
that we can use in this study: annotations that are shared between code
submissions and that occur on specific lines of those submissions.

In this section we answer the following research questions: (RQ1) Can
previously added annotations be used to predict what annotations a
reviewer is likely to add to a specific line of code during manual assessment
of student-written code? (RQ2) Additionally, can this be done so that
both training of and predictions by the method are fast enough to use in
live reviewing situations with human reviewers?

We present ECHO (Efficient Critique Harvesting and Ordering), a machine
learning approach that aims to facilitate the reuse of previously given
feedback. We begin with a detailed explanation of the design of ECHO. We
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Figure 6.3: Assessment of a submitted solution in Dodona. An automated
assessment has already been performed, with 22 failed test cases, as
can be seen from the badge on the “Correctness” tab. An automated
annotation left by Pylint can be seen on line 22. A teacher gives
feedback on the code by adding inline annotations and scores the
submission by filling out the exercise-specific scoring rubric. The
teacher has just searched for a previously saved annotation so that
they could reuse it. After manually assessing this submission, the
teacher still has another 23 submissions to assess, as shown in the
progress bar on the right.
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then present and discuss the experimental results we obtained by testing
ECHO on student submissions. The dataset we used for this experiment
is based on real Python code written by students during exams. First,
we test ECHO by predicting Pylint machine annotations. Next, we use
annotations left by human reviewers during manual assessment.

6.5.2 Methodology

We consider predicting relevant annotations to be a ranking problem,
which we solve by determining similarity between the lines of code where
annotations are added. The approach to determine this similarity is based
on tree mining. This is a data mining technique for extracting frequently
occurring patterns from data that can be represented as trees (Asai et al.,
2004; Zaki, 2005). Program code can be represented as an abstract syntax
tree (AST), where the nodes of the tree represent the language constructs
used in the program. Recent work has demonstrated the efficacy of this
approach in efficiently identifying frequent patterns in source code (Pham
et al., 2019). In an educational context, these techniques have already been
used to find patterns common to solutions that failed a given exercise (Mens
et al., 2021). Other work has demonstrated the potential of automatically
generating unit tests from mined patterns (Lienard et al., 2023). We use
tree mining to find commonalities between the lines of code where the
same annotation has been added.

We begin with a general overview of ECHO (Figure 6.4). The first step
is to use the tree-sitter library (Brunsfeld et al., 2024) to generate ASTs
for each submission. Using tree-sitter makes ECHO independent of the
programming language used, since it presents an interface for generating
syntax trees independent of the programming language. The syntax trees
are post-processed to include identifier names. For each annotation, we
identify all occurrences and extract a constrained AST context around
the annotated line for each instance. The resulting subtrees are then
aggregated for each annotation. If there are three or more subtrees, they
are processed by the TreeminerD algorithm (Zaki, 2005). This yields a
set of frequently occurring patterns specific to that annotation. We then
assign weights to these patterns based on their length and their frequency
across the entire dataset of patterns for all annotations. In addition to
pattern mining, we also determine a set of unique nodes per forest of
subtrees. The result of these operations is our trained model.
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The model can then be used to score how well an annotation matches
a given code fragment. In practice, the reviewer first selects a line of
code in a given student’s submission. Next, the AST of the selected line
and its surrounding context is generated. For each annotation, each of
its patterns is matched to the line, and a similarity score is calculated,
given the previously determined weights. The percentage of unique nodes
which match in the current subtree is also taken into account. These
scores are used to rank the annotations, which are then displayed to the
reviewer. It is important to note that the reviewer remains in control of
which annotation is used, if any.

We will now provide a more in-depth explanation of this process, with
a particular emphasis on operational efficiency. Speed is of the utmost
importance throughout the model’s lifecycle, from training to deployment
in real-time reviewing contexts. Given the continuous generation of training
data during the review process, the model’s training time must be optimized
to avoid significant delays, ensuring that the model remains practical for
live review situations.

Figure 6.4: Overview of ECHO. Code of previously reviewed submissions is
converted to its abstract syntax tree (AST) form. Instances of the
same annotation have the same colour. For each annotation, the
context of each instance is extracted and mined for patterns using
the TreeminerD algorithm. These patterns are then weighted to form
our model. When a reviewer wants to place an annotation on a line
of the submissions they are currently reviewing, all previously given
annotations are ranked based on the similarity determined for that
line. The reviewer can then choose which annotation they want to
place, with the aim of having the selected annotation at the top of
in the ranking.
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Training

The first step of ECHO is to extract a subtree for each instance of an
annotation and then aggregate them per annotation. Currently, the context
around a line is extracted by taking all the AST nodes from that line.
For example, Figure 6.5 shows that the subtree extracted for the code
on line 3 of Listing 6.1. Note that the context we extract here is very
limited. Previous iterations of ECHO considered all nodes that contained
the relevant line (e.g. the function node for a line in a function), but these
contexts proved too large to process in an acceptable time.

1 def jump(alpha, n):
2 alpha_number = ord(alpha)
3 adjusted = alpha_number + n
4 return chr(adjusted)

Listing 6.1: Example code that simply adds a number to the ASCII value of a
character and converts it back to a character.

Figure 6.5: AST subtree corresponding to line 3 in Listing 6.1 as generated by
tree-sitter.

After collecting subtrees for each annotation, ECHO mines patterns from
these subtrees using TreeminerD (Zaki, 2005): an algorithm for discovering
frequently occurring patterns in datasets of rooted, ordered and labelled
trees. TreeminerD starts with a list of frequently occurring nodes, and
then iteratively expands the frequently occurring patterns. Patterns are
embedded subtrees: the nodes in a pattern are a subset in the nodes of the
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tree, preserving the ancestor-descendant relationships and the left-to-right
order of the nodes. An example of a valid pattern for the tree in Figure 6.5
is shown in Figure 6.6.

Figure 6.6: Valid pattern for the tree in Figure 6.5. Indirect ancestor-descendant
relationships are marked with dashed lines.

In the TreeminerD algorithm, frequent means that the number of times the
pattern occurs in all trees divided by the number of trees is greater than
some predefined threshold. This is called the minimum support parameter
of the algorithm.

We use a custom implementation of the TreeminerD algorithm, to find
patterns in the AST subtrees for each annotation. Due to the exponential
nature of the number of possible patterns in a tree, we only mine for
patterns when there are at least three trees.

ECHO now has a set of patterns corresponding to each annotation. How-
ever, some patterns are more informative that others. So it assigns weights
to the patterns it gets from TreeminerD.

Weights are assigned using two criteria. The first criterion is the size of
the pattern (i.e., the number of nodes in the pattern), since a pattern with
twenty nodes is much more specific than a pattern with only one node.
The second criterion is the number of occurrences of a pattern across all
annotations. If the pattern sets for all annotations contain a particular
pattern, it can not be used reliably to determine which annotation should
be predicted and is therefore given a lower weight. Weights are calculated
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using the formula below.

weight(pattern) = len(pattern)
#occurences(pattern)

In addition to mining and weighting patterns, ECHO also determines a
set of nodes that are unique to the subtrees of each annotation. This is
done by taking the union of the nodes of all subtrees for that annotation,
and then removing from that set any nodes that occur in the subtrees of
at least three other annotations. This step does not require a minimum
number of instances per annotation.

Ranking

Having completed the above steps, ECHO has trained its model. To use
the model, ECHO needs to know how to match patterns to subtrees.

To check whether a given pattern matches a given subtree, we iterate over
all the nodes in the subtree. At the same time, we also iterate over the
nodes in the pattern. During the iteration, we also store the current depth,
both in the pattern and the subtree. We also keep a stack to store (some
of) the depths of the subtree. If the current label in the subtree and the
pattern are the same, we store the current subtree depth on the stack
and move to the next node in the pattern. Moving up in the tree is more
complicated. If the current depth and the depth of the last match (stored
on the stack) are the same, we can move forwards in the pattern (and
the subtree). If not, we need to check that we are still in the embedded
subtree, otherwise we need to reset our position in the pattern to the start.
Since subtrees can contain multiple instances of the same label, we also
need to make sure that we can backtrack. Listings 6.2 and 6.3 give the
full pseudocode for this algorithm.

Checking whether a pattern matches a subtree is an operation that ECHO
has to perform many times. For some annotations there are many patterns,
and all patterns of all annotations are checked. An important optimization
we added was to run the algorithm in Listings 6.2 and 6.3 only if the set
of labels in the pattern is a subset of the labels in the subtree.

Given a model where we have weighted patterns for each annotation, and
a method for matching patterns to subtrees, we can now put the two
together to make a final ranking of the available annotations for a given
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1 start, p_i, pattern_depth, depth = 0
2 depth_stack, history = []
3

4 subtree_matches(subtree, pattern):
5 result = find_in_subtree(subtree, subtree)
6 while not result and history is not empty:
7 to_explore, to_explore_subtree = history.pop()
8 while not result and to_explore is not empty:
9 start, depth, depth_stack, p_i = to_explore.pop()

10 new_subtree = to_explore_subtree[start:]
11 start = 0
12 if pattern_length - p_i <= len(new_subtree) and

new_subtree is fully contained in pattern[p_i:]:↪→

13 result = find_in_subtree(subtree, new_subtree)
14 return result

Listing 6.2: Pseudocode for checking whether a pattern matches a subtree. Note
that both the pattern and the subtree are stored in the encoding
described by Zaki (2005). The implementation of find_in_subtree
can be found in Listing 6.2.

line of code. We calculate a match score for each annotation using the
formula below.

score(annotation) =

∑
pattern

∈ patterns

{
weight(pattern) pattern matches
0 otherwise

len(patterns)

ECHO then ranks the annotations by combining the score and the per-
centage of nodes in the set of unique nodes for that annotation.

6.5.3 Results and discussion
As a dataset to validate ECHO, we used Python code written by students
for programming exercises from (different) exams. The dataset contains
between 135 and 214 submissions per exercise. Each submission for a
particular exercise is by a different student. We first split the datasets
equally into a training set and a test set. This simulates the midpoint of
an assessment session for the exercise. During testing, we let our model
suggest annotations for each of the lines that had an actual annotation
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1 find_in_subtree(subtree, current_subtree):
2 local_history = []
3 for item in subtree:
4 if item == -1:
5 if depth_stack is not empty and depth - 1 ==

depth_stack.last:↪→

6 depth_stack.pop()
7 if pattern [p_i] != -1:
8 p_i = 0
9 if depth_stack is empty:

10 history.append((local_history,
current_subtree[:i + 1])↪→

11 local_history = []
12 else:
13 p_i += 1
14 depth -= 1
15 else:
16 if pattern[p_i] == item:
17 local_history.append((start + i + 1, depth + 1,

depth_stack, p_i))↪→

18 depth_stack.append(depth)
19 p_i += 1
20 depth += 1
21 if p_i == pattern_length:
22 return True
23 if local_history is not empty:
24 history.append((local_history, current_subtree))
25 return False

Listing 6.3: Continuation of Listing 6.2.
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associated with them in the test set. We evaluate where the correct
annotation is ranked. We only look at the top five to get a good idea of
how useful the suggested ranking would be in practice: if an annotation is
not in the top five, we would expect the reviewer to have to search for it
manually, rather than selecting it directly from the suggested ranking.

We first ran Pylint51 (version 3.1.0) on the students’ submissions. Pylint
is a static code analyser for Python that checks for errors and code smells,
and enforces a standard programming style. We used Pylint’s machine
annotations as our training and test data. We test per exercise because
that’s our main use case for ECHO, but we also run a test that combines all
submissions from all exercises. An overview of some annotation statistics
for the data generated by Pylint can be found in Table 6.1.

Exercise subm. ann. inst. max avg
A last goodbye 135 25 189 29 7.56
Symbolic 141 28 277 66 9.89
Narcissus cipher 144 29 148 24 5.10
Cocktail bar 211 31 162 29 5.23
Anthropomorphic emoji 214 24 144 40 6.00
Hermit 194 82 388 59 6.80
Combined 1039 82 1479 196 18.04

Table 6.1: Statistics of Pylint annotations for the programming exercises used
in the benchmark.

In a second experiment, we used the manual annotations left by human
reviewers on student code in Dodona. Exercises were reviewed by different
people, but all submissions for a specific exercise were reviewed by the
same person. The reviewers were not aware of ECHO at the time they
reviewed the submissions. In this case there is no combined test as the set
of annotations used is different for each exercise.

We distinguish between these two sources of annotations because we expect
Pylint to be more consistent in both when it places an instance of an
annotation and also where it places the instance. Most linting annotations
are detected by explicit pattern matching in the AST, so we expect the
implicit pattern matching to work fairly well. However, we want to skip
this explicit pattern matching for manual annotations because of the time
it takes to compile them and the fact that annotations are often specific
to a particular exercise and reviewer. Therefore, we also test on manual
51https://www.pylint.org/
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annotations. Manual annotations are expected to be more inconsistent
because reviewers may miss a problem in one student’s code that they
have annotated in another student’s code, or they may not place instances
of a particular annotation in consistent locations. The method by which
human reviewers place an annotation is also much more implicit than
Pylint’s pattern matching.

The reviewed programming exercises have between 55 and 469 instances of
manual annotations. The number of distinct annotations varies between 7
and 34 per exercise. Table 6.2 gives an overview of some of characteristics
of the dataset. Timings mentioned in this section were measured on a 2022
Dell laptop with a 3GHz Intel quad-core processor and 32 GB of RAM.

Exercise subm. ann. inst. max avg
A last goodbye 135 34 334 92 9.82
Symbolic 141 7 55 25 7.85
Narcissus cipher 144 17 193 55 11.35
Cocktail bar 211 15 469 231 31.27
Anthropomorphic emoji 214 27 322 39 11.93
Hermit 194 32 215 27 6.71

Table 6.2: Statistics of manually added annotations for the programming exer-
cises used in the benchmark.

Machine annotations (Pylint)

We will first discuss the results for the Pylint annotations. During the
experiment, a few Pylint annotations that are not related to the structure
of the code were omitted to avoid distorting the results. These are “line
too long”, “trailing whitespace”, “trailing newlines”, “missing module
docstring”, “missing class docstring”, and “missing function docstring”.
Depending on the exercise, the actual annotation is ranked among the
top five annotations in 45% to 77% of all test instances (Figure 6.7). The
annotation is even ranked first for 23% to 52% of all test instances. Inter-
estingly, the method performs worse when the instances for all exercises are
combined. This highlights the fact that ECHO is most useful in the context
of reviewing similar code many times. For the submissions and instances in
the training set, training took between 70 and 245 milliseconds to process
all submissions and instances for an exercise. The entire test phase took
between 30 and 180 milliseconds per exercise. Individual predictions never
exceed 15 milliseconds.
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Figure 6.7: Prediction accuracy for suggesting instances of Pylint annotations.
The numbers on the right are the total number of annotations and
instances respectively. The “Combined” test evaluated ECHO on
the entire set of submissions for all exercises.

We have selected some interesting annotations for further inspection, some
of which perform very well, and some of which perform less well (Figure 6.8).
We chose these specific annotations to demonstrate interesting behaviours
exhibited by ECHO. The differences in performance can be explained by
the content of the annotation and the underlying patterns that Pylint is
looking for. For example, the “unused variable”52 annotation performs
poorly. This can be explained by the fact that we do not feed TreeminerD
with enough context to find predictive patterns for this Pylint annotation.
There are also annotations that can not be predicted at all, because no
patterns are found.

Other annotations, such as “consider using with”53, work very well. For
these annotations, TreeminerD does have enough context to automatic-
ally determine the underlying patterns. The number of instances of an
annotation in the training set also has an effect. Annotations with few
instances are generally predicted worse than those with many instances.

52https://pylint.pycqa.org/en/latest/user_guide/messages/warning/
unused-variable.html

53https://pylint.pycqa.org/en/latest/user_guide/messages/refactor/
consider-using-with.html
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Figure 6.8: Prediction accuracy for a selection of Pylint machine annotations.
Each line corresponds to a Pylint annotation, with the number of
instances in the training and test sets given in parentheses after the
annotation name.

Human annotations

For the annotations added by human reviewers, we used two different
scenarios to evaluate ECHO. In addition to using the same 50/50 split
between training and test data as for the Pylint data, we also simulated how
a human reviewer would use ECHO in practice by gradually increasing the
training set and decreasing the test set as the reviewer progresses through
the submissions during the assessment. At the start of the assessment, no
annotations are available and the first instance of an annotation that applies
to a reviewed submission can not be predicted. As more submissions are
reviewed and more instances of annotations are placed on those submissions,
the training set for modelling predictions on the next submission under
review gradually grows.

If we split the submissions and the corresponding annotations of a human
reviewer equally into a training and a test set, the prediction accuracy
is similar or even slightly better compared to the Pylint annotations
(Figure 6.9). The number of instances where the true annotation is ranked
first is generally higher (between 29% and 63% depending on the exercise),
and the number of instances where it is ranked in the top five is between
63% and 93% depending on the exercise.
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Figure 6.9: Prediction accuracy for suggesting instances of annotations by hu-
man reviewers. The numbers on the right are the total number of
annotations and instances respectively.

In this experiment, training took between 67 milliseconds and 22.4 seconds
per exercise. The entire test phase took between 49 milliseconds and 27
seconds, depending on the exercise. These evaluations were run on the
same hardware as those for the machine annotations. For one prediction,
the average time ranged from 0.1 milliseconds to 150 milliseconds and the
maxima from 0.5 milliseconds to 2.8 seconds. The explanation for these
wide ranges remains the same as for the Pylint predictions: it all depends
on the number of patterns found.

These results show that we can predict reuse with a fairly high accuracy at
the midpoint of a review session for a programming exercise. The accuracy
depends on the number of instances per annotation and the consistency of
the reviewer. Looking at the underlying data, we can also see that short,
atomic messages can be predicted very well, as suggested by Moons et al.
(2022). We will now look at the longitudinal prediction accuracy of ECHO,
to test how accuracy evolves over the course of a review session.

For the next experiment, we introduce two specific categories of negative
prediction results, namely “No training instances” and “No patterns”. “No
training instances” means that the annotation corresponding to the true
instance had no instances in the training set, and therefore could never
have been predicted. “No patterns” means that TreeminerD was unable
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to find any frequent patterns for the set of subtrees extracted from the
annotation instances and there were also no nodes unique to this set of
subtrees in the entire set of subtrees. This could be because the collection
of subtrees is too diverse to have common patterns.

Figures 6.10, 6.11, 6.12 and 6.13 show the results of this experiment
for four of the programming exercises used in the previous experiments.
The “Symbolic” exercise was excluded due to its low number of unique
annotations, while the “Hermit” exercise was excluded due to its poor
performance in the previous experiment. We also excluded submissions
that received no annotations during the human review process, which
explains the lower number of submissions compared to the numbers in
Table 6.2. This experiment shows that while the review process requires
some time to build up before sufficient training instances are available, once
a critical mass of training instances is reached, the accuracy for suggesting
new instances of annotations reaches its maximum predictive power. This
critical mass is reached after about 20 to 30 submissions reviewed, which
is quite early in the review process (Figure 6.14). This means that a lot of
time could be saved during the review process when ECHO is integrated
into an online learning environment. The point at which the critical mass
is reached will of course depend on the nature of the exercises and the
consistency of the reviewer.

As mentioned above, we are working with a slightly inconsistent dataset
when using annotations from human reviewers. They will sometimes miss
an instance of an annotation, place it inconsistently, or unnecessarily create
duplicate annotations. If ECHO is used in practice, the predictions may
be even better, as the knowledge of its existence may further motivate
reviewers to be more consistent in their reviews. The programming exer-
cises were also reviewed by different people, which may also explain the
differences in prediction accuracy between the exercises.

To evaluate the performance of ECHO for these experiments, we measure
the training times, and the times required for each prediction. This
corresponds to a reviewer wanting to add an annotation to a line in
practice. Figures 6.15, 6.16, 6.17, and 6.18 show the performance of
running these experiments. As in the previous experiments, we can see
that there is a considerable difference between the exercises. However,
the training time only exceeds one second in a few cases and remains
well below that in most cases. The prediction times are mostly below 50
milliseconds, except for a few outliers. The average prediction time never
exceeds 500 milliseconds.
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Figure 6.10: Progression of the prediction accuracy for the “A last goodbye”
exercise over the course of the review process. Predictions for
instances whose annotation had no instances in the training set are
classified as “No training instances”. Predictions for instances whose
annotation had no corresponding patterns in the model learned
from the training set are classified as “No patterns”. The graph on
the right shows the number of annotations present with at least
one instance in the training set.
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Figure 6.11: Progression of the prediction accuracy for the “Narcissus cipher”
exercise over the course of the review process. Predictions for
instances whose annotation had no instances in the training set are
classified as “No training instances”. Predictions for instances whose
annotation had no corresponding patterns in the model learned
from the training set are classified as “No patterns”. The graph on
the right shows the number of annotations present with at least
one instance in the training set.
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Figure 6.12: Progression of the prediction accuracy for the “Cocktail bar” exer-
cise over the course of the review process. Predictions for instances
whose annotation had no instances in the training set are classified
as “No training instances”. Predictions for instances whose annota-
tion had no corresponding patterns in the model learned from the
training set are classified as “No patterns”. The graph on the right
shows the number of annotations present with at least one instance
in the training set.
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Figure 6.13: Progression of the prediction accuracy for the “Anthropomorphic
emoji” exercise over the course of the review process. Predictions for
instances whose annotation had no instances in the training set are
classified as “No training instances”. Predictions for instances whose
annotation had no corresponding patterns in the model learned
from the training set are classified as “No patterns”. The graph on
the right shows the number of annotations present with at least
one instance in the training set.
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Figure 6.14: Evolution of the percentage of suggestions that are ranked in the
top 5. The percentages are fairly stable after 20 to 30 submissions
have been reviewed.

The timings show that although there are some outliers, predictions can
be made fast enough to make this an interactive system. The outliers
also correspond to higher training times, indicating that this is mainly
caused by a high number of underlying patterns for some annotations.
Currently this process is also parallelized over the files, but in practice,
the process could be parallelized over the patterns, which would speed up
the prediction even more. Note that the training time may also decrease
with more training data. If there are more instances per annotation, the
diversity in the related subtrees will usually increase, which reduces the
number of patterns that can be found and thus reduces the training time.

6.5.4 Conclusions and future work
We presented ECHO as a predictive method to assist human reviewers in
giving feedback when reviewing students submissions to a programming
exercise by reusing annotations. Improving the reuse of annotations can
both save time and improve the consistency with which feedback is given.
The latter in itself might further improve the accuracy of predictions if
the strategy is applied during the review process.

ECHO has already shown promising results. We have validated the
framework both by predicting automated linting annotations to establish
a baseline, and by predicting annotations from human reviewers. The
method has about the same prediction accuracy for machine (Pylint) and
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6.5 Phase 4: Feedback prediction

Figure 6.15: Time needed for training and testing during the entire review process
for the exercise “A last goodbye”. Top: training time. Bottom:
average (orange dot) and range (blue line) of time needed to predict
a single instance.
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6 Automating manual feedback

Figure 6.16: Time needed for training and testing during the entire review process
for the exercise “Narcissus cipher”. Top: training time. Bottom:
average (orange dot) and range (blue line) of time needed to predict
a single instance.
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6.5 Phase 4: Feedback prediction

Figure 6.17: Time needed for training and testing during the entire review
process for the exercise “Cocktail bar”. Top: training time. Bottom:
average (orange dot) and range (blue line) of time needed to predict
a single instance.
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6 Automating manual feedback

Figure 6.18: Time needed for training and testing during the entire review
process for the exercise “Anthropomorphic emoji”. Top: training
time. Bottom: average (orange dot) and range (blue line) of time
needed to predict a single instance.
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6.5 Phase 4: Feedback prediction

human annotations. Thus, we can answer both our research questions in
an affirmative way, meaning that the reuse of feedback previously given by
a human reviewer on a particular line of a new submission can be predicted
with high accuracy (RQ1), and that this can be done fast enough to assist
human reviewers in future reviews (RQ2).

Having ECHO at hand immediately raises some opportunities fo follow-up
work. Currently, the proposed model is reactive: we suggest a ranking of
the most likely annotations when a reviewer wants to add an annotation
to a particular line of a submission. By introducing a confidence score, we
could check beforehand whether we have a confident match for each line,
and then immediately propose these suggestions to the reviewer. Whether
or not a reviewer accepts these suggestions could then also be used as an
input to the model. This could also have an additional benefit by helping
reviewers to be more consistent in where and when they place annotations.

Annotations that do not lend themselves well to prediction also need
further investigation. The context used could be expanded, although the
important caveat here is that the method still needs to maintain sufficient
performance. We could also consider applying some of the source code
pattern mining techniques proposed by Pham et al. (2019) to achieve
further speed improvements. This could help with the outliers seen in the
timing data. Another important aspect that was explicitly outside of the
scope of this chapter was the integration of ECHO into a learning platform
and user testing.

Of course, alternative methods could also be considered. One can not
overlook the rise of Large Language Models (LLMs) and the way in which
they could contribute to this problem. LLMs can generate feedback for
students based on their submitted solution and a well-chosen system
prompt. Fine-tuning of an LLM with feedback already given is another
possibility. Future applications could also combine user generated and
LLM generated feedback, showing human reviewers the source of the
feedback during their reviews.
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7 Looking ahead: opportunities
and challenges

It feels safe to say that Dodona is a successful automated assessment
platform with a big societal impact. 70 000 users is quite a lot, and the
fact that it is being actively used in a lot of higher education institutions
and secondary schools in Flanders is a feat that not many other similar
platforms have achieved.

As we have tried to show in this dissertation, its development has also led
to interesting opportunities for new research. Dodona generates a lot of
data, and we have shown that educational data mining can be used on
this data. It can even be used to develop new educational data mining
techniques that are applicable elsewhere. The work is, however, never
finished. There are still possibilities for interesting computer science and
educational research.

7.1 Research opportunities
A big question, left open in this work, is what to do with the results we
obtained in Chapter 5. Teachers can use the results to figure out which
aspects of their course students are struggling with, and take general
measures to deal with this. But should we, and if so, how should we
communicate predictions to individual students, or what other interventions
with students should we take?

Chapter 6 also suggests a number of improvements that could still be
worked on. It gives us a framework for suggesting the feedback a teacher
probably wants to give when selecting a line, but we could also try to come
up with a confidence score and use that to suggest feedback before the
teacher has even done that. Another interesting (more educational) line
of research that this work suggests is building the method into an actual
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7 Looking ahead: opportunities and challenges

assessment platform, and looking at its effects on feedback consistency
and quality, time saved by teachers, …

A new idea for research using Dodona’s data would be skill estimation.
There are a few ways we could try to infer what skills are being tested by
exercises: we could try to use the model solution, or the labels assigned
to the exercise in Dodona. Using those skills, we could try to estimate
a student’s mastery of those skills, using their submissions. This would
probably be done similarly to the research presented in Chapter 5 (using
metrics like time-on-task). A skill profile would be more complicated
though, since we would want some kind of vector to represent a student’s
progress in each estimated skill.

This leads right into another possibility for future research: exercise recom-
mendation. Right now, learning paths in Dodona are static, determined
by the teacher of the course the student is following. Dodona has a rich
library of extra exercises, which some courses point to as opportunities for
extra practice, but it is not always easy for students to know what exer-
cises would be good for them. Using a skill profile, we could recommend
exercises that only contain one skill the student has not fully attained,
allowing them to focus their practice on that skill specifically. We would
again need to infer what skills are tested by exercises, but this was already
required for the skill estimation itself.

The research from Chapter 5 could also be used to help solve this problem
in another way. If we know a student has a higher chance of failing the
course, we might want to recommend some easier exercises. The other
way around, if a student has a higher chance of passing, we could suggest
more difficult exercises, so they can keep up their good progress in their
course. Estimating the difficulty of an exercise is a problem unto itself
though (and how difficult an exercise is, is also dependent on the student
themselves).

The use of LLMs in Dodona could also be an opportunity. As mentioned
in Section 6.5.4, a possibility for using LLMs could be to generate feedback
while grading. By feeding an LLM with the student’s code, an indication
of the failed test cases (although doing this in a good format is an issue to
solve in itself) and the type of issues that the teacher wants to address, it
should be able to give a good starting point for the feedback. This could
also kickstart the process explained in Section 6.5.4. By making generated
feedback reusable, the given feedback can still remain consistent and fair.
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7.2 Challenges for the future

Another option is to integrate an LLM as an AI tutor (as, for example, Khan
Academy has done with Khanmigo54). This way, it could interactively
help students while they are learning. Instead of tools like ChatGPT or
Bard which are typically used to get a correct answer immediately, an AI
tutor can guide students to find the correct answer to an exercise gradually
by giving hints.

The final possibility we will present here is to prepare suggestions for
answers to student questions on Dodona. At first glance, LLMs should
be quite good at this. If we use the LLM output as a suggestion for what
the teacher could answer, this should be a big time-saver. However, there
are some issues around data quality. Questions are sometimes asked on
a specific line, but the question does not necessarily have anything to do
with that line. Sometimes the question also needs context that is hard to
pass on to the LLM. For example, if the question is just “I don’t know
what’s wrong.”, a human might look at the failed test cases and be able
to answer the “question” in that way. As mentioned previously, passing
on the failed test cases to the LLM is a harder problem to solve. The
actual assignment also needs to be passed on, but depending on its size
this might also present a problem given token limitations/cost per token of
some models. Another important aspect of this research would be figuring
out how to evaluate the quality of the suggestions.

7.2 Challenges for the future
Even though Dodona is a successful project with some exciting possibilities
for research that can still be done, the project also faces some challenges.

The most important of these challenges is the sustainability of the project.
Dodona was started in the spare time of some researchers. After a few
years, there was somebody working on it full-time. However, the funding
for a full-time developer was always, and still is, temporary. PhD students
who can devote some of their time to it are attracted, grants are applied
for (and sometimes granted), but there is no stable source of funding. We
have the advantage that we can kindly make use of Ghent University’s
data centre, resulting in very few operational costs. A full-time developer,
which Dodona is big enough to need, is expensive though. This puts
Dodona’s future in a precarious situation, where there is a constant need
to look for new funding opportunities.
54https://www.khanmigo.ai/
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7 Looking ahead: opportunities and challenges

As much as generative AI can be an asset for Dodona, it is also a threat.
Most exercises in Dodona can be solved by LLMs without issues.55 This
has some troubling implications for Dodona. Students using ChatGPT
or GitHub Copilot when solving their exercises, might not learn as much
as students who do the work fully on their own (just like students who
plagiarize have a lower chance of passing their courses, as seen in Chapter 5).
Another aspect is the fairness and integrity of evaluations using Dodona.
The case study in Chapter 3 details the use of open-book/open-internet
evaluations. If students can use generative AI during these evaluations
(either locally or via a webservice), and knowing that LLMs can solve most
exercises on Dodona, these evaluations will test the students’ abilities less
and less, if students can use LLMs. The way to solve these issues is not
clear. It seems like LLMs are here to stay, and just like the calculator is
a commonplace tool these days, the same could be true for LLMs in the
future.56 Instead of banning the use of LLMs, teachers could integrate
the use of them in their courses. On the other hand, when children first
learn to count and add, they do not use calculators. The same might be
necessary when learning to program: to learn the basics, students might
need to do a lot of things themselves, to really get a feel for what they are
doing.

55Or at least with some nudging.
56The IMEC digimeter (a yearly survey on technology use in Flanders) showed that

18% of Flemish people used generative AI at least monthly in 2023.
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A Overview of Dodona releases

In this appendix, we give an overview of the most important Dodona
releases, and the changes they introduced, organized per academic year.
This is not a full overview of all Dodona releases, and does not mention
all changes in a particular release.57

2015–2016

0.1 (2016-04-07) Minimal Rails app, where a list of exercises is shown
based on files in the filesystem. This was only for JavaScript, and
the code was executed locally in the browser.

0.2 (2016-04-14) Addition of a webhook to automatically update exer-
cises. Assignments are rendered from Markdown, and can include
media and formulas. Ace was introduced as the editor.

0.5 (2016-08-10) This is the first release supporting Python through
server-side judging.

0.6 (2016-08-16) Judges can now be auto-updated through a webhook.

0.7 (2016-09-07) The concept of a series was introduced.

2016–2017

1.0 (2016-09-23) Dodona now runs on multiple servers, and series have
gained a deadline.

1.1 (2016-09-28) Teachers can now configure boilerplate code per exer-
cise.

1.2 (2016-10-10) The Python Tutor was added to Dodona.

57A full overview of all Dodona releases, with their full changelog, can be found at
https://github.com/dodona-edu/dodona/releases/.
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A Overview of Dodona releases

1.3 (2016-11-02) Hidden series using a token link were added. Users
could now also download their solutions for a series.

1.4.6 (2017-03-17) Use the student’s latest submission instead of their
best submission in most places.

2017–2018

2.0 (2017-09-15) Introduction of the concept of a course administrator.
Courses could also be set to hidden, and options for managing
registration were added.

2.3 (2018-07-26) OAuth sign in support was added, allowing users from
other institutions to use Dodona.58

2018–2019

2.4 (2018-09-17) Add management and ownership of exercises and repos-
itories by users. Users with teacher rights could no longer see and
edit all users.

2.5 (2018-10-26) Improved search functionality. Courses were now also
linked to an institution for improved searchability.

2.6 (2018-11-21) Diffing in the feedback view was fully reworked (see
Chapter 4 for more details).

2.7 (2018-12-04) The punchcard was added to the course page. Labels
could now also be added to course members.

2.8 (2019-03-05) Submissions and their feedback were moved from the
database to the filesystem.

2.9 (2019-03-27) Large UI rework of Dodona, adding the class progress
visualization. This release also adds a page with Dodona’s privacy
policy.

2.10 (2019-05-06) Allow courses to be copied. Anonymous mode (called
demo mode at the time) was added.

2.11 (2019-06-27) Introduction of dark mode. This release also adds the
heatmap visualization.

58This is also the first release where I was personally involved with Dodona’s develop-
ment.
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2019–2020

3.0 (2019-09-12) Dodona was made open source. Support for the R
programming language was added around this time.

3.1 (2019-10-17) Exercise descriptions were moved to iframes. Diffing
was further improved.

3.2 (2019-11-28) Fully reworks the exporting of submissions.

3.3 (2020-02-26) The exercise info page was added.

3.4 (2020-04-19) Allow adding annotations on a submission.

3.6 (2020-04-27) Add reading activities as a new assignment type.

3.7 (2020-06-03) This release adds evaluations to Dodona.

2020–2021

4.0 (2020-09-16) Q&A support got added in this release, along with LTI
support.

4.3 (2021-04-26) Add the teacher rights request form.

4.4 (2021-05-05) Add grading to evaluations (as a private beta).

4.6 (2021-06-18) Featured courses were added in this release.

2021–2022

5.0 (2021-09-13) New learning analytics were added to each series. This
release also includes the full release of grading after an extensive
private beta.

5.3 (2022-02-04) A new heatmap graph was added to the series analytics.

5.5 (2022-04-25) Introduction of Papyros, our own online code editor.

5.6 (2022-07-04) Another visual refresh of Dodona, this time to follow
the Material Design 3 spec.

2022–2023

6.0 (2022-08-18) Allow users to sign in with a personal Google or Mi-
crosoft account.
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6.1 (2022-09-19) Allow reuse of annotations in evaluations.

6.8 (2023-05-17) Threading of questions was added.

2023.07 (2023-07-04) Introduction of monthly releases, whose contents
are continuously deployed.

2023.08 (2023-08-01) Switch from dodona.ugent.be to dodona.be

2023–2024

2023.10 (2023-10-01) Annotation reuse is rolled out to all users.

2023.11 (2023-11-01) The Python Tutor is moved client-side.

2023.12 (2023-12-01) The feedback view was reworked, moving every
context to its own card.

2024.02 (2024-02-01) Papyros now also has an integrated debugger based
on the Python Tutor.
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B Pass/fail prediction feature
types

subm numbers of submissions by student in series

nosubm number of exercises student did not submit any solutions for in
series

first_dl time difference in seconds between student’s first submission in
series and deadline of series

last_dl time difference in seconds between student’s last submission in
series before deadline and deadline of series

nr_dl number of correct submissions in series by student before series’
deadline

correct number of correct submissions in series by student

after_correct number of submissions by student after their first correct
submission in the series

before_correct number of submissions by student before their first cor-
rect submission in the series

time_series time difference in seconds between the student’s first and
last submission in the series

time_correct time difference in seconds between the student’s first sub-
mission in the series and their first correct submission in the series

wrong number of submissions by student in series with logical errors

comp_error number of submissions by student in series with compilation
errors

runtime_error number of submissions by student in series with runtime
errors
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B Pass/fail prediction feature types

correct_after_5m number of exercises where first correct submission by
student was made within five minutes after first submission

correct_after_15m number of exercises where first correct submission
by student was made within fifteen minutes after first submission

correct_after_2h number of exercises where first correct submission by
student was made within two hours after first submission

correct_after_24h number of exercises where first correct submission
by student was made within twenty-four hours after first submission
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